

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor’s Guide

Welcome and thank you for your interest in contributing to the QuantConnect Lean open source project. This document aims to describe the preferred workflow contributors should follow when contributing new source code to the project. This Git workflow is inspired greatly by the irON-Parsers Contributors Guide [https://github.com/structureddynamics/irON-Parsers/wiki/Collaboration%3A-git-development-workflow].

Contributing

Who is a Collaborator?

A collaborator is someone with write access to the QuantConnect Lean repository. Collaborators merge pull requests from contributors.

Who is a Contributor?

A contributor can be anyone! It could be you. Continue reading this section if you wish to get involved and contribute back to the QuantConnect Lean open source project!

Code Style and Testing

Code reviewers will be expecting to see code that follows Microsoft’s C# guidelines. There are a few resources available here [https://msdn.microsoft.com/en-us/library/czefa0ke(VS.71).aspx] and here [https://msdn.microsoft.com/en-us/library/ff926074.aspx].

As a point of consistency, we use soft tabs of four spaces to ensure files render correctly in everyone’s environment/diff tools.

All pull requests must be accompanied by units tests. If it is a new feature, the tests should highlight expected use cases as well as edge cases, if applicable. If it is a bugfix, there should be tests that expose the bug in question.

Guidelines for Framework Modules Contributions

Contributions of Algorithm Framework [https://www.quantconnect.com/docs/algorithm-framework/overview] Modules needs to follow certain extra patterns, since QuantConnect users can use them in their algorithms.

Generally modules should do one focused, specific role well. For example, combining risk control logic with notifications [https://www.quantconnect.com/docs/live-trading/notifications] or placing orders outside execution models violates the general programming rule ‘separation of concerns’. Keep each module doing one specific task and if you want to consider additional functionality add event handlers that users can bind to from their Algorithm instance.

By default production code should be silent unless there is a fatal exception. Because of this, logging or debugging [https://www.quantconnect.com/docs/algorithm-reference/logging-and-debug] is not allowed inside LEAN framework modules. Additional charting [https://www.quantconnect.com/docs/algorithm-reference/charting] inside the module consumes the resources and should not be included in a module as well.

Initial Setup

	Setup a GitHub [https://github.com/] account

	Fork [https://help.github.com/articles/fork-a-repo/] the repository [https://github.com/QuantConnect/Lean] of the project

	Clone your fork locally

$ git clone https://github.com/username/Lean.git

	Navigate to the QuantConnect Lean directory and add the upstream remote

$ cd Lean
$ git remote add upstream https://github.com/QuantConnect/Lean.git

The remote upstream branch links your fork of Lean with our master copy, so when you perform a git pull --rebase you’ll be getting updates from our repository.

Keeping your master up-to-date!

Now that you’ve defined the remote upstream branch, you can refresh your local copy of master with the following commands:

$ git checkout master
$ git pull --rebase

This will checkout your local master branch and then merge changes in from the remote upstream branch. We use rebase [https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase] to reduce noise from merge commits.

Branching Model

If unfamiliar with git branches, please read this short guide on branches [https://www.atlassian.com/git/tutorials/using-branches/].

The following names will be used to differentiate between the different repositories:

	upstream - The ‘official’ QuantConnect Lean repository [https://github.com/QuantConnect/Lean.git] (what is on QuantConnect’s GitHub account)

	origin - Your fork of the official repository on GitHub (what is on your GitHub account)

	local - This will be your local clone of origin (what is on your computer)

As a contributor you will push your completed local topic branch to origin. As a contributor you will pull your updates from upstream. As a collaborator (write-access) you will merge branches from contributors into upstream.

Primary Branch

The upstream repository holds a single primary branch that we maintain:

	upstream/master - This is the where main development takes place

Topic Branches

Topic branches are for contributors to develop bug fixes and new features so that they can be easily merged to master. They must follow a few simple rules for consistency:

	Must branch off from master

	Must be merged back into master

	Consider using the GitHub issue number in the branch name

Topic branches should exist in your local and origin repositories only. Submitting a pull request will request a merge from your topic branch to our upstream/master branch.

Working on topic branches

First create a new branch for the work you’d like to perform. When naming your branch, please use the following convention: bug-<issue#>-<description> or feature-<issue#>-<description>:

$ git checkout -b bug-123-short-issue-description
Switched to a new branch 'bug-123-short-issue-description'

Now perform some work and commit changes. Always review your changes before committing

$ git status
$ git diff
$ git add --all
$ git commit

You can push your changes to your fork’s master branch using:

$ git push origin master

When committing, be sure to follow best practices [https://github.com/erlang/otp/wiki/Writing-good-commit-messages] writing good commit descriptions.

After performing some work you’ll want to merge in changes from the upstream/master. You can use the following two commands in order to assist upstream merging:

$ git fetch upstream
$ git rebase upstream/master bug-123-short-issue-description

The git fetch upstream command will download the upstream repository to your computer but not merge it. The rebase upstream/master bug-123-short-issue-description command will rebase [https://www.atlassian.com/git/tutorials/rewriting-history/git-commit--amend] your changes on top of upstream/master. This will make the review process easier for collaborators.

CAUTION Please note that once you have pushed your branch remotely you MUST NOT rebase!

If you need to merge changes in after pushing your branch to origin, use the following:

$ git pull upstream/master

When topic branches are finished and ready for review, they should be pushed back to origin.

$ git push origin bug-123-short-issue-description
To git@github.com:username/Lean.git
 * [new branch] bug-123-short-issue-description -> bug-123-short-issue-description

Now you’re ready to send a pull request [https://help.github.com/articles/using-pull-requests/] from this branch to upstream/master and update the GitHub issue tracker to let a collaborator know that your branch is ready to be reviewed and merged. If extra changes are required as part of the review process, make those changes on the topic branch and re-push. First re-checkout the topic branch you made your original changes on:

$ git checkout bug-123-short-issue-description

Now make responses to the review comments, commit, and re-push your changes:

$ git add --all
$ git commit
$ git push

[image: https://cdn.quantconnect.com/web/i/20180601-1615-lean-logo-small.png]alt tag

[image: https://github.com/QuantConnect/Lean/workflows/Build%20%26%20Test%20Lean/badge.svg]Build Status [https://github.com/QuantConnect/Lean/actions?query=workflow%3A%22Build%20%26%20Test%20Lean%22] [image: https://github.com/QuantConnect/Lean/workflows/Regression%20Tests/badge.svg]Regression Tests [https://github.com/QuantConnect/Lean/actions?query=workflow%3A%22Regression%20Tests%22] [image: https://img.shields.io/badge/debug-LEAN%20Forum-53c82b.svg]LEAN Forum [https://www.quantconnect.com/forum/discussions/1/lean] [image: https://img.shields.io/badge/chat-Slack-53c82b.svg]Slack Chat [https://www.quantconnect.com/slack]

Lean Home [https://www.lean.io/] | Documentation [https://www.lean.io/docs/] | Download Zip [https://github.com/QuantConnect/Lean/archive/master.zip] | Docker Hub [https://hub.docker.com/orgs/quantconnect/repositories] | Nuget [https://www.nuget.org/profiles/jaredbroad]

Introduction

Lean Engine is an open-source algorithmic trading engine built for easy strategy research, backtesting and live trading. We integrate with common data providers and brokerages so you can quickly deploy algorithmic trading strategies.

The core of the LEAN Engine is written in C#; but it operates seamlessly on Linux, Mac and Windows operating systems. It supports algorithms written in Python 3.8 or C#. Lean drives the web-based algorithmic trading platform QuantConnect [https://www.quantconnect.com].

Proudly Sponsored By

Want your company logo here? Sponsor LEAN [https://github.com/sponsors/QuantConnect] to be part of radically open algorithmic-trading innovation.

QuantConnect is Hiring!

Join the team and solve some of the most difficult challenges in quantitative finance. If you are passionate about algorithmic trading we’d like to hear from you. The below roles are open in our Seattle, WA office. When applying, make sure to mention you came through GitHub:

	C# Engineer [https://www.getonbrd.com/jobs/programming/c-c-software-engineer-quantconnect-remote]: Contribute remotely to the core of LEAN through the open-source project LEAN.

	UX Developer [https://www.getonbrd.com/jobs/programming/full-stack-engineer-quantconnect-remote]: Collaborate with QuantConnect to develop a world-leading online experience for a community of developers from all over the world.

System Overview

[image: _images/2-Overview-Detailed-New.png]alt tag

The Engine is broken into many modular pieces which can be extended without touching other files. The modules are configured in config.json as set “environments”. Through these environments, you can control LEAN to operate in the mode required.

The most important plugins are:

	Result Processing (IResultHandler)

Handle all messages from the algorithmic trading engine. Decide what should be sent, and where the messages should go. The result processing system can send messages to a local GUI, or the web interface.

	Datafeed Sourcing (IDataFeed)

Connect and download the data required for the algorithmic trading engine. For backtesting this sources files from the disk, for live trading, it connects to a stream and generates the data objects.

	Transaction Processing (ITransactionHandler)

Process new order requests; either using the fill models provided by the algorithm or with an actual brokerage. Send the processed orders back to the algorithm’s portfolio to be filled.

	Realtime Event Management (IRealtimeHandler)

Generate real-time events - such as the end of day events. Trigger callbacks to real-time event handlers. For backtesting, this is mocked-up a works on simulated time.

	Algorithm State Setup (ISetupHandler)

Configure the algorithm cash, portfolio and data requested. Initialize all state parameters required.

These are all configurable from the config.json file in the Launcher Project.

Developing with Visual Studio Code Dev Containers

The Dev Containers [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers] extension lets you use a Docker container as a full-featured development environment. The extension starts (or attaches to) a development container running the quantconnect/research:latest image.

A full explanation of developing Lean with Visual Studio Code Dev Containers can be found in the VS Code Integration [https://github.com/QuantConnect/Lean/tree/master/.vscode#readme] project.

Developing with Lean CLI

QuantConnect recommends using Lean CLI [https://github.com/QuantConnect/lean-cli] for local algorithm development. This is because it is a great tool for working with your algorithms locally while still being able to deploy to the cloud and have access to Lean data. It is also able to run algorithms on your local machine with your data through our official docker images.

Reference QuantConnects documentation on Lean CLI here [https://www.quantconnect.com/docs/v2/lean-cli/key-concepts/getting-started]

Installation Instructions

This section will cover how to install lean locally for you to use in your own environment.

Refer to the following readme files for a detailed guide regarding using your local IDE with Lean:

	VS Code

	VS

To install locally, download the zip file with the latest master [https://github.com/QuantConnect/Lean/archive/master.zip] and unzip it to your favorite location. Alternatively, install Git [https://git-scm.com/downloads] and clone the repo:

git clone https://github.com/QuantConnect/Lean.git
cd Lean

macOS

	Install Visual Studio for Mac [https://www.visualstudio.com/vs/visual-studio-mac/]

	Open QuantConnect.Lean.sln in Visual Studio

Visual Studio will automatically start to restore the Nuget packages. If not, in the menu bar, click Project > Restore NuGet Packages.

	In the menu bar, click Run > Start Debugging.

Alternatively, run the compiled dll file. First, in the menu bar, click Build > Build All, then:

cd Lean/Launcher/bin/Debug
dotnet QuantConnect.Lean.Launcher.dll

Linux (Debian, Ubuntu)

	Install dotnet 6 [https://docs.microsoft.com/en-us/dotnet/core/install/linux]:

	Compile Lean Solution:

dotnet build QuantConnect.Lean.sln

	Run Lean:

cd Launcher/bin/Debug
dotnet QuantConnect.Lean.Launcher.dll

	Interactive Brokers set up details

Make sure you fix the ib-tws-dir and ib-controller-dir fields in the config.json file with the actual paths to the TWS and the IBController folders respectively.

If after all you still receive connection refuse error, try changing the ib-port field in the config.json file from 4002 to 4001 to match the settings in your IBGateway/TWS.

Windows

	Install Visual Studio [https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx]

	Open QuantConnect.Lean.sln in Visual Studio

	Build the solution by clicking Build Menu -> Build Solution (this should trigger the Nuget package restore)

	Press F5 to run

Python Support

A full explanation of the Python installation process can be found in the Algorithm.Python [https://github.com/QuantConnect/Lean/tree/master/Algorithm.Python#quantconnect-python-algorithm-project] project.

Local-Cloud Hybrid Development.

Seamlessly develop locally in your favorite development environment, with full autocomplete and debugging support to quickly and easily identify problems with your strategy. For more information please see the CLI Home [https://www.quantconnect.com/cli].

Issues and Feature Requests

Please submit bugs and feature requests as an issue to the Lean Repository [https://github.com/QuantConnect/Lean/issues]. Before submitting an issue please read others to ensure it is not a duplicate.

Mailing List

The mailing list for the project can be found on LEAN Forum [https://www.quantconnect.com/forum/discussions/1/lean]. Please use this to request assistance with your installations and setup questions.

Contributors and Pull Requests

Contributions are warmly very welcomed but we ask you to read the existing code to see how it is formatted, commented and ensure contributions match the existing style. All code submissions must include accompanying tests. Please see the contributor guide lines [https://github.com/QuantConnect/Lean/blob/master/CONTRIBUTING]. All accepted pull requests will get a 2mo free Prime subscription on QuantConnect. Once your pull-request has been merged write to us at support@quantconnect.com with a link to your PR to claim your free live trading. QC <3 Open Source.

A huge thank-you all our contributors!

Acknowledgements

The open-sourcing of QuantConnect would not have been possible without the support of the Pioneers. The Pioneers formed the core 100 early adopters of QuantConnect who subscribed and allowed us to launch the project into open source.

Ryan H, Pravin B, Jimmie B, Nick C, Sam C, Mattias S, Michael H, Mark M, Madhan, Paul R, Nik M, Scott Y, BinaryExecutor.com, Tadas T, Matt B, Binumon P, Zyron, Mike O, TC, Luigi, Lester Z, Andreas H, Eugene K, Hugo P, Robert N, Christofer O, Ramesh L, Nicholas S, Jonathan E, Marc R, Raghav N, Marcus, Hakan D, Sergey M, Peter McE, Jim M, INTJCapital.com, Richard E, Dominik, John L, H. Orlandella, Stephen L, Risto K, E.Subasi, Peter W, Hui Z, Ross F, Archibald112, MooMooForex.com, Jae S, Eric S, Marco D, Jerome B, James B. Crocker, David Lypka, Edward T, Charlie Guse, Thomas D, Jordan I, Mark S, Bengt K, Marc D, Al C, Jan W, Ero C, Eranmn, Mitchell S, Helmuth V, Michael M, Jeremy P, PVS78, Ross D, Sergey K, John Grover, Fahiz Y, George L.Z., Craig E, Sean S, Brad G, Dennis H, Camila C, Egor U, David T, Cameron W, Napoleon Hernandez, Keeshen A, Daniel E, Daniel H, M.Patterson, Asen K, Virgil J, Balazs Trader, Stan L, Con L, Will D, Scott K, Barry K, Pawel D, S Ray, Richard C, Peter L, Thomas L., Wang H, Oliver Lee, Christian L..

Expected Behavior

Actual Behavior

Potential Solution

Reproducing the Problem

System Information

Checklist

 Description

Description

Related Issue

Motivation and Context

Requires Documentation Change

How Has This Been Tested?

Types of changes

	[] Bug fix (non-breaking change which fixes an issue)

	[] Refactor (non-breaking change which improves implementation)

	[] Performance (non-breaking change which improves performance. Please add associated performance test and results)

	[] New feature (non-breaking change which adds functionality)

	[] Breaking change (fix or feature that would cause existing functionality to change)

	[] Non-functional change (xml comments/documentation/etc)

Checklist:

	[] My code follows the code style of this project.

	[] I have read the CONTRIBUTING document [https://github.com/QuantConnect/Lean/blob/master/CONTRIBUTING].

	[] I have added tests to cover my changes.

	[] All new and existing tests passed.

	[] My branch follows the naming convention bug-<issue#>-<description> or feature-<issue#>-<description>

 <no title>

 Local Development with Visual Studio
This document contains information regarding ways to use Visual Studio to work with the Lean engine, this includes a couple options that make lean easy to develop on any machine:

	Using Lean CLI -> A great tool for working with your algorithms locally, while still being able to deploy to the cloud and have access to Lean data. It is also able to run algorithms locally through our official docker images **Recommended for algorithm development.

	Locally installing all dependencies to run Lean with Visual Studio on your OS.

Setup
Option 1: Lean CLI

To use Lean CLI follow the instructions for installation and tutorial for usage in our documentation [https://www.quantconnect.com/docs/v2/lean-cli/getting-started/lean-cli].

Option 2: Install Locally

	Install .Net 6 [https://dotnet.microsoft.com/download] for the project

	(Optional) Get Python 3.8.13 [https://www.python.org/downloads/release/python-3813/] for running Python algorithms

	Follow Python instructions here [https://github.com/QuantConnect/Lean/tree/master/Algorithm.Python#installing-python-38] for your platform

	Get Visual Studio [https://visualstudio.microsoft.com/vs/]

	Get Lean into VS

	Download the repo or clone it using: git clone https://github.com/QuantConnect/Lean

	Open the project file with VS (QuantConnect.Lean.sln)

Your environment is prepared and ready to run lean

How to use Lean
This section will cover configuring, launching and debugging lean. This is only applicable to option 2 from above. This does not apply to Lean CLI, please refer to CLI documentation [https://www.quantconnect.com/docs/v2/lean-cli/getting-started/lean-cli]

Configuration

We need to be sure that our Lean configuration at .\Launcher\config.json is properly set.

Your configuration file should look something like this for the following languages:

Python:

"algorithm-type-name": "**AlgorithmName**",

"algorithm-language": "Python",

"algorithm-location": "../../../Algorithm.Python/**AlgorithmName**.py",

C#:

"algorithm-type-name": "**AlgorithmName**",

"algorithm-language": "CSharp",

"algorithm-location": "QuantConnect.Algorithm.CSharp.dll",

Launching Lean

Now that lean is configured we can launch. Use Visual Studio’s run option, Make sure QuantConnect.Lean.Launcher is selected as the launch project. Any breakpoints in Lean C# will be triggered.

Common Issues

Here we will cover some common issues with setting this up. Feel free to contribute to this section!

 <no title>

 Local Development

 QuantConnect Python Algorithm Project

QuantConnect Python Algorithm Project

This document contains information regarding how to use Python with the Lean engine, this includes how to use Python Autocomplete, setting up Lean for Python algorithms, PythonNet compilation for devs, and what imports to use to replicate the web IDE experience in your local development.

Local Python Autocomplete

To enable autocomplete for your local Python IDE, install the quantconnect-stubs package from PyPI using the following command:

pip install quantconnect-stubs

To update your autocomplete to the latest version, you can run the following command:

pip install --upgrade quantconnect-stubs

Copy and paste the imports found here to the top of your project file to enable autocomplete.

In addition, you can use Skylight [https://www.quantconnect.com/skylight] to automatically sync local changes to the cloud.

Setup Lean Locally with Python

Before setting up python support, follow the installation instructions [https://github.com/QuantConnect/Lean#installation-instructions] to get LEAN running C# algorithms on your machine.

Installing Python 3.8:

Next we must prepare a Python installation for Lean to use. Follow the instructions for your OS.

Windows [https://github.com/QuantConnect/Lean#windows]

	Use the Windows x86-64 MSI Python 3.8.13 installer from python.org [https://www.python.org/downloads/release/python-3813/] or Anaconda [https://repo.anaconda.com/archive/Anaconda3-5.2.0-Windows-x86_64.exe] for Windows installer. “Anaconda 5.2” installs 3.5.2 by default, after installation of Anaconda you will need to upgrade python to make it work as expected: conda install -y python=3.8.13

	When asked to select the features to be installed, make sure you select “Add python.exe to Path”

	Create PYTHONNET_PYDLL environment variable to the location of your python dll in your installation (e.g. C:\Dev\Python38\python38.dll or C:\Anaconda3\python38.dll):

	Right mouse button on My Computer. Click Properties.

	Click Advanced System Settings -> Environment Variables -> System Variables

	Click New.

	Name: PYTHONNET_PYDLL

	Value: {python dll location}

	Install pandas=1.4.3 [https://pandas.pydata.org/] and its dependencies [https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies].

	Install wrapt=1.14.1 [https://pypi.org/project/wrapt/] module.

	Reboot computer to ensure changes are propagated.

macOS [https://github.com/QuantConnect/Lean#macos]

	Use the macOS x86-64 package installer from Anaconda [https://repo.anaconda.com/archive/Anaconda3-5.2.0-MacOSX-x86_64.pkg] and follow “Installing on macOS [https://docs.anaconda.com/anaconda/install/mac-os]” instructions from Anaconda documentation page.

	Set PYTHONNET_PYDLL environment variable to the location of your python dll in your installation directory (e.g. /Users/{your_user_name}/anaconda3/lib/libpython3.8.dylib):

	Open ~/.bash-profile with a text editor of your choice.

	Add a new line to the file containing

export PYTHONNET_PYDLL="/{your}/{path}/{here}/libpython3.8.dylib"

	Save your changes, and either restart your terminal or execute

source ~/.bash-profile

	Install pandas=1.4.3 [https://pandas.pydata.org/] and its dependencies [https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies].

	Install wrapt=1.14.1 [https://pypi.org/project/wrapt/] module.

Linux [https://github.com/QuantConnect/Lean#linux-debian-ubuntu]

	Install Python using miniconda by following these commands; by default, miniconda is installed in the users home directory ($HOME):

export PATH="$HOME/miniconda3/bin:$PATH"
wget https://cdn.quantconnect.com/miniconda/Miniconda3-4.5.12-Linux-x86_64.sh
bash Miniconda3-4.5.12-Linux-x86_64.sh -b
rm -rf Miniconda3-4.5.12-Linux-x86_64.sh
conda update -y python conda pip

	Create a new Python environment with the needed dependencies

conda create -n qc_lean python=3.8.13 pandas=1.4.3 wrapt=1.14.1

	Set PYTHONNET_PYDLL environment variable to location of your python dll in your installation directory (e.g. /home/{your_user_name}/miniconda3/envs/qc_lean/lib/libpython3.8.so):

	Open /etc/environment with a text editor of your choice.

	Add a new line to the file containing

PYTHONNET_PYDLL="/home/{your_user_name}/miniconda3/envs/qc_lean/lib/libpython3.8.so"

	Save your changes, and logout or reboot to reflect these changes

Run Python Algorithms

	Update the config [https://github.com/QuantConnect/Lean/blob/master/Launcher/config.json] to run a python algorithm:

"algorithm-type-name": "BasicTemplateAlgorithm",
"algorithm-language": "Python",
"algorithm-location": "../../../Algorithm.Python/BasicTemplateAlgorithm.py",

	Build LEAN.

	Run LEAN. You should see the same result of the C# algorithm you tested earlier.

Python.NET development - Python.Runtime.dll compilation

LEAN users do not need to compile Python.Runtime.dll. The information below is targeted to developers who wish to improve it. Download QuantConnect/pythonnet [https://github.com/QuantConnect/pythonnet/] github clone or downloading the zip. If downloading the zip - unzip to a local pathway.

Note: QuantConnect’s version of pythonnet is an enhanced version of pythonnet [https://github.com/pythonnet/pythonnet] with added support for System.Decimal and System.DateTime.

Below are some examples of build commands that create a suitable Python.Runtime.dll.

msbuild pythonnet.sln /nologo /v:quiet /t:Clean;Rebuild

OR

dotnet build pythonnet.sln

Python Autocomplete Imports

Adding from AlgorithmImports import * to the top of your Python file is enough to enable autocomplete and import the required types for the algorithm at runtime.

Known Issues

	Python can sometimes have issues when paired with our quantconnect stubs package on Windows. This issue can cause modules not to be found because site-packages directory is not present in the python path. If you have the required modules installed and are seeing errors about them not being found, please try the following steps:

	remove stubs -> pip uninstall quantconnect-stubs

	reinstall stubs -> pip install quantconnect-stubs

 Position Groups

Position Groups

Motivation

The motivation behind the position groups feature is to enable algorithms to submit an order for a logical grouping of securities in a single action. In some cases, the margin required for the group is far less than the sum of the margin required for each piece individually. This happens when the grouping provides some sort of hedge, thereby reducing the overall risk of the position, and in some cases, can be a completely market neutral position. A simple example is a covered call strategy, which nominally consists of 100 shares of the underlying equity and short 1 option contract. Since the short contract position is covered by the account holding the underlying, brokerages reduce the margin requirements. The end goal is to enable LEAN to not only accurately model such groupings, but also submit a multi-leg order so the brokerage can process it as a single order. There are some cases where submitting the legs individually is not possible due to margin requirements, but grouping them together allows the order to be successfully processed.

Design

The position groups feature introduces some new abstractions and key concepts that will be covered in this section.

IPosition

A position defines some quantity of a security. It may be all of the security’s holdings or only a fraction of the holdings. Each position defines a few key properties listed below:

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/IPosition.cs

/// <summary>
/// The symbol
/// </summary>
Symbol Symbol { get; }

/// <summary>
/// The quantity
/// </summary>
decimal Quantity { get; }

/// <summary>
/// The unit quantity. The unit quantities of a group define the group. For example, a covered
/// call has 100 units of stock and -1 units of call contracts.
/// </summary>
decimal UnitQuantity { get; }

The Symbol property is everything you expect it to be, uniquely identifying which security this position is in and the Quantity is likewise uninteresting, denoting the directional (position for long negative for short) quantity of the position. The UnitQuantity defines the smallest allowable quantity increment according to the definition of the group the position belongs to. For the default group, SecurityPositionGroup, the UnitQuantity is equal to the security’s lot size (SymbolProperties.LotSize). An equity position in a group with option contracts will have a UnitQuantity equal to the contract’s multiplier (SymbolProperties.ContractMultiplier). There’s an important relationship between the Quantity and the UnitQuantity which is that Quantity/UnitQuantity must always yield a whole number and denotes the number of lots. Using the covered call example from earlier, we may have 5 covered calls. Each contract will have a UnitQuantity equal to -1 and the underlying equity will have a UnitQuantity normally equal to 100, so 5 covered calls yields -5 contracts and 500 shares in the underlying.

PositionGroupKey

Before diving into the IPositionGroup abstraction, it’s important to briefly mention the PositionGroupKey. This class uniquely defines a position group within the algorithm and is a deterministic identifier constructed from the contained positions’ Symbol and UnitQuantity properties coupled with an IPositionGroupBuyingPowerModel. We’ll discuss modelling in a later section, but for now it’s enough to understand that if two position group contain the same exact position but are modeled differently, then LEAN will treat them as different positions. The UnitQuantities list is, under the covers, an ImmutableSortedSet which guarantees determinism. In other words, -1 GOOG CALL; +100 GOOG is the same as +100 GOOG; -1 GOOG CALL. The PositionGroupKey can be used to index into collection types containing position groups as well as into the PositionManager (to be discussed later). This class also offers a variety of convenience functions for creating empty and unit positions and groups, which is pretty cool as it implies that the PositionGroupKey contains sufficient information to create an entire IPositionGroup. It’s essentially a template for a particular group type with an exact set of symbol. More on group types later.

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/PositionGroupKey.cs

/// <summary>
/// Gets whether or not this key defines a default group
/// </summary>
public bool IsDefaultGroup { get; }

/// <summary>
/// Gets the <see cref="IPositionGroupBuyingPowerModel"/> being used by the group
/// </summary>
public IPositionGroupBuyingPowerModel BuyingPowerModel { get; }

/// <summary>
/// Gets the unit quantities defining the ratio between position quantities in the group
/// </summary>
public IReadOnlyList<Tuple<Symbol, decimal>> UnitQuantities { get; }

IPositionGroup

A position group is unsurprisingly a grouping of IPosition instances. More importantly though, a position group contains the definition of the group, which includes the ratios between the UnitQuantity of its constituent positions and the IPositionGroupBuyingPowerModel. These definitional pieces are all contained within the PositionGroupKey discussed in the previous section. IPositionGroup implements the IReadOnlyCollection<IPosition> interface, which allows it to be used as an IEnumerable<IPosition>. The Key property exposes the deterministic identifier and the Quantity property exposes how many units of the group there are. Recalling the earlier discussion in the IPosition section, where we showed that Quantity/UnitQuantity yields the number of lots; the number of lots is exactly equal to, by definition, the position group’s quantity. Further, every position within the group must have the same exact number of lots, and if not, then something has gone terribly wrong! Position groups have definitions that define the ratios between the positions. We keep using the covered call example, but they can be far more complicated. Due to its simplicity, we’ll continue with the covered call example, and more specifically, consider a covered call position group with a Quantity equal to 5. This means that the ratio of the option contract position’s Quantity/UnitQuantity equals 5 and the ratio of the equity position’s Quantity/UnitQuantity equal 5. As mentioned earlier, modeling is an important part of the position group’s definition, and as such, IPositionGroup directly exposes its own model via the BuyingPowerModel property, and in this way, IPositionGroup is analogous to a Security object, in that it’s the smallest unit of modelling and trading within LEAN with respect to the position group subsystems. There are some extension methods provided that we’ll touch on later and only one method is exposed directly by the interface: TryGetPosition, which is intended to behave identically to IDictionary<K, V>.TryGetValue, returning true and a valid position instance or false and default(IPosition) when the group doesn’t contain a position with the provided symbol.

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/IPositionGroup.cs

/// <summary>
/// Gets the key identifying this group
/// </summary>
PositionGroupKey Key { get; }

/// <summary>
/// Gets the whole number of units in this position group
/// </summary>
decimal Quantity { get; }

/// <summary>
/// Gets the positions in this group
/// </summary>
IEnumerable<IPosition> Positions { get; }

/// <summary>
/// Gets the buying power model defining how margin works in this group
/// </summary>
IPositionGroupBuyingPowerModel BuyingPowerModel { get; }

/// <summary>
/// Attempts to retrieve the position with the specified symbol
/// </summary>
/// <param name="symbol">The symbol</param>
/// <param name="position">The position, if found</param>
/// <returns>True if the position was found, otherwise false</returns>
bool TryGetPosition(Symbol symbol, out IPosition position);

IPositionGroupResolver

The position group resolver is responsible for inspecting an algorithm’s security holdings and creating a set of groups that minimizes the margin requirement of the entire portfolio. Some brokerages do this automatically for you, such as IB. The default resolver used to match ungrouped security holdings into the default SecurityPositionGroup is the SecurityPositionGroupResolver. Each type of group (default/options/futures) will have its own resolver. The options resolver (not yet implemented), will integrate the OptionStrategyMatcher. The OptionStrategyMatcher looks at a set of security holdings with the same underlying, for example, GOOG and all GOOG option contracts, and attempts to arrange these holdings into groups to minimize the total margin required. When adding futures we’ll need to add a FutureStrategyMatcher. The matchers work by looking at a set of definitions that define the specific ways in which securities can be grouped, such as covered call, but also more complex groupings such as the Straddle and Strangle. You can see the complete set of option strategy definitions in the OptionStrategyDefinitions class. The OptionStrategyMatcher loads all of these definitions and matches them to the algorithm’s holdings. Once integrated into the yet-to-be-implemented OptionStrategyPositionGroupResolver, the results of the match operation will need to be projected into position group instances. Every time the algorithm’s holdings change we need to evaluate at least a subset of the holdings to look for unexpected broken groups and determine whether or not breaking the group pushes the margin requirement up too high. It’s entirely possible that the algorithm might not be able to sell that single share of GOOG from our earlier example because doing so breaks the covered call group and has the potential to increase the margin requirement beyond the maximum allowed.

In addition to performing matching functions, it also serves as a descriptor for how groups are constructed and therefore, the impacts of breaking a particular group. Since running all resolvers on the entire portfolio is an expensive operation, when holdings change its beneficial to only consider groups impacted by the change. Since each type of group has different rules regarding how the positions relate to one another, the resolver exposes the GetImpactedGroups function. The first argument is usually the entire set of groups being maintained by the PositionManager and the second argument represents the changes being contemplated. I say contemplated because this is part of the ‘what if’ analysis that is done before LEAN validates an order as being executable/submittable. We ask the resolver which groups are impacted by the requested change, for example -1 GOOG. In this example, the response would include all position groups that the equity GOOG is a member of in addition to all position groups that contain a GOOG option contract. We can then apply our changed positions to this reduced set of position groups and resolve the new position groups. We can then calculate the margin requirements on this new set of position groups and verify that its within bounds. If so, the order may proceed, if not, the order is flagged as insufficient buying power.

This idea of needing to run ‘what if’ analysis might take a minute before you’re convinced that it’s absolutely required, but once you understand how dynamic groups are and likewise how easily they can be broken and particularly how much margin is saved through grouping (sometimes over 75%), it quickly becomes clear that breaking a group can have severe implications on the available margin in the algorithm’s portfolio. Despite much effort and ample trying, we were unable to come up with a more performant mechanism and at this point are extremely confident that running ‘what if’ analysis is actually the only way to confidently and consistently get the correct answer every time. This is what led to the introduction of the GetImpactGroups, which saves a lot of time in algorithms with hundreds of security holdings and potentially hundreds of non-default groups. Consider being long 100 securities and writing a covered call on each. With GetImpactedGroups, if you sell one of the underlying shares, we’ll only evaluate groups related to that equity and ignore the other 99 equity/option related groups.

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/IPositionGroupResolver.cs

/// <summary>
/// Attempts to group the specified positions into a new <see cref="IPositionGroup"/> using an
/// appropriate <see cref="IPositionGroupBuyingPowerModel"/> for position groups created via this
/// resolver.
/// </summary>
/// <param name="positions">The positions to be grouped</param>
/// <param name="group">The grouped positions when this resolver is able to, otherwise null</param>
/// <returns>True if this resolver can group the specified positions, otherwise false</returns>
bool TryGroup(IReadOnlyCollection<IPosition> positions, out IPositionGroup group);

/// <summary>
/// Resolves the position groups that exist within the specified collection of positions.
/// </summary>
/// <param name="positions">The collection of positions</param>
/// <returns>An enumerable of position groups</returns>
PositionGroupCollection Resolve(PositionCollection positions);

/// <summary>
/// Determines the position groups that would be evaluated for grouping of the specified
/// positions were passed into the <see cref="Resolve"/> method.
/// </summary>
/// <remarks>
/// This function allows us to determine a set of impacted groups and run the resolver on just
/// those groups in order to support what-if analysis
/// </remarks>
/// <param name="groups">The existing position groups</param>
/// <param name="positions">The positions being changed</param>
/// <returns>An enumerable containing the position groups that could be impacted by the specified position changes</returns>
IEnumerable<IPositionGroup> GetImpactedGroups(
 PositionGroupCollection groups,
 IReadOnlyCollection<IPosition> positions
);

IPositionGroupBuyingPowerModel

Another appropriately named abstraction that leaves mystery on the sidelines. This interface aims to be an IPositionGroup-centric one-for-one mapping of the Security-centric IBuyingPowerModel. The only operations that were not ported from the original are the ones focused on getting/setting leverage, which simply doesn’t apply to position groups. As you can see from the below excerpt, position groups require their own margin calculations, their own sufficient buying power for order checks and their own functions for determining the maximum quantity for a given delta/target buying power. I won’t go into all of the methods as they’re identical in purpose as their IBuyingPower counterparts, however, there is one added method, and that is the GetReservedBuyingPowerImpact. One of the challenges of dealing with position groups is determining how a particular trade will impact the algorithm’s groups. Consider our default case of 5 units of GOOG covered call. If we try to sell 1 GOOG share, bringing our total to 499 (500 - 1) shares of GOOG, it will break one of the position group units. This will likely increase the total margin requirement of the portfolio. The GetReservedBuyingPowerImpact function exists to perform this ‘what if’ analysis.

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/IPositionGroupBuyingPowerModel.cs

/// <summary>
/// Gets the margin currently allocated to the specified holding
/// </summary>
/// <param name="parameters">An object containing the security</param>
/// <returns>The maintenance margin required for the </returns>
MaintenanceMargin GetMaintenanceMargin(PositionGroupMaintenanceMarginParameters parameters);

/// <summary>
/// The margin that must be held in order to increase the position by the provided quantity
/// </summary>
/// <param name="parameters">An object containing the security and quantity</param>
InitialMargin GetInitialMarginRequirement(PositionGroupInitialMarginParameters parameters);

/// <summary>
/// Gets the total margin required to execute the specified order in units of the account currency including fees
/// </summary>
/// <param name="parameters">An object containing the portfolio, the security and the order</param>
/// <returns>The total margin in terms of the currency quoted in the order</returns>
InitialMargin GetInitialMarginRequiredForOrder(PositionGroupInitialMarginForOrderParameters parameters);

/// <summary>
/// Computes the impact on the portfolio's buying power from adding the position group to the portfolio. This is
/// a 'what if' analysis to determine what the state of the portfolio would be if these changes were applied. The
/// delta (before - after) is the margin requirement for adding the positions and if the margin used after the changes
/// are applied is less than the total portfolio value, this indicates sufficient capital.
/// </summary>
/// <param name="parameters">An object containing the portfolio and a position group containing the contemplated
/// changes to the portfolio</param>
/// <returns>Returns the portfolio's total portfolio value and margin used before and after the position changes are applied</returns>
ReservedBuyingPowerImpact GetReservedBuyingPowerImpact(
 ReservedBuyingPowerImpactParameters parameters
);

/// <summary>
/// Check if there is sufficient buying power for the position group to execute this order.
/// </summary>
/// <param name="parameters">An object containing the portfolio, the position group and the order</param>
/// <returns>Returns buying power information for an order against a position group</returns>
HasSufficientBuyingPowerForOrderResult HasSufficientBuyingPowerForOrder(
 HasSufficientPositionGroupBuyingPowerForOrderParameters parameters
);

/// <summary>
/// Computes the amount of buying power reserved by the provided position group
/// </summary>
ReservedBuyingPowerForPositionGroup GetReservedBuyingPowerForPositionGroup(
 ReservedBuyingPowerForPositionGroupParameters parameters
);

/// <summary>
/// Get the maximum position group order quantity to obtain a position with a given buying power
/// percentage. Will not take into account free buying power.
/// </summary>
/// <param name="parameters">An object containing the portfolio, the position group and the target
/// signed buying power percentage</param>
/// <returns>Returns the maximum allowed market order quantity and if zero, also the reason</returns>
GetMaximumLotsResult GetMaximumLotsForTargetBuyingPower(
 GetMaximumLotsForTargetBuyingPowerParameters parameters
);

/// <summary>
/// Get the maximum market position group order quantity to obtain a delta in the buying power used by a position group.
/// The deltas sign defines the position side to apply it to, positive long, negative short.
/// </summary>
/// <param name="parameters">An object containing the portfolio, the position group and the delta buying power</param>
/// <returns>Returns the maximum allowed market order quantity and if zero, also the reason</returns>
/// <remarks>Used by the margin call model to reduce the position by a delta percent.</remarks>
GetMaximumLotsResult GetMaximumLotsForDeltaBuyingPower(
 GetMaximumLotsForDeltaBuyingPowerParameters parameters
);

/// <summary>
/// Gets the buying power available for a position group trade
/// </summary>
/// <param name="parameters">A parameters object containing the algorithm's portfolio, security, and order direction</param>
/// <returns>The buying power available for the trade</returns>
PositionGroupBuyingPower GetPositionGroupBuyingPower(PositionGroupBuyingPowerParameters parameters);

PositionGroupBuyingPowerModel

In the spirit of BuyingPowerModel, we’ve provided a base class for position group specific models to extend, as much of the logic is agnostic to the details of the group thanks to the way the various abstractions have been defined. That being said, when integrating options groups we will need to add an OptionStrategyPositionGroupBuyingPowerModel which subclasses the default base class PositionGroupBuyingPowerModel. The option strategy specific type will need to reference the table provided by Interactive Brokers which describes the margin requirements for each type of option strategy. You can find this table on IB’s website here [https://www.interactivebrokers.com/en/index.php?f=26660]. This link, along with research notes and heaps of information outlining the general thought pattern and some of the concerns considered, all accumulated during the initial analysis/investigation phase in the github feature request issue #4065 [https://github.com/QuantConnect/Lean/issues/4065]. IB seems to be what the users want, but once that’s done I think it makes sense to also implement FINRA models. The takeaway from reading all of the regulations is that FINRA provides a baseline and brokers are free make them more strict (and maybe less strict, but IIRC FINRA set a limit), and indeed brokers can decide to not support the concept of grouping at all. In such cases the broker would charge margin as the simple sum of the constituent parts, ie, no savings from groupings. We’ll want to have a mechanism to support this case easily. This can be easily done by configuring the PositionManager to only use the SecurityPositionGroupResolver (more on that later though).

Back to the PositionGroupBuyingPowerModel - you’ll notice that these methods make no assumptions as to the type or structure of the position group being evaluated, and as such, uses a lot of ‘what if’ analysis to make determinations. A particularly interesting bit is the GetMaximumLotsForTargetBuyingPower function. This function should be suitable for all subclasses as its phrased in the most general way possible. The SecurityPositionGroupBuyingPowerModel does override it for backwards compatibility reasons, particularly because each IBuyingPowerModel implementation (I’m looking at you CashBuyingPowerModel) implements this functions slightly differently and especially when it comes to how fees are handled. Fees can either be part of the pro-rata operation or fees can be viewed as a fixed cost coming off of the top. It took a while to arrive at a logical reasoning for one or the other, but the PositionGroupBuyingPowerModel removes fees off of the top. The reason for this is based on this function’s usage, most notably, QCAlgorithm.SetHoldings. The purpose of this function is to allocate a particular percentage of the total portfolio value into something (a position group in this case). If the fees were part of the pro-rata allocation then that’s like saying we seek a quantity where the cost of the order is a particular percentage of total portfolio value, whereas taking the fees off the top is saying that we seek a quantity such that after the trade is completed, that position group (or security) will be the requested percentage of the total portfolio value.

Some time was taken to improve the Newton-Rhapson root finding. For some reason all of the IBuyingPowerModel implementations of this method have degraded over the years, now requiring two full iterations before returning. This is unnecessary. In a very common case, where fees are directly proportional to the total order value, it all breaks down into a simple linear equation and can by analytically solved exactly without iterating at all (very common in crypto). The time should be taken to refactor the existing IBuyingPowerModel implementations by extracting to a single common implementation and parameterizing anything that’s special.

Another function worth mentioning is HasSufficientBuyingPowerForOrder which has to perform multiple checks now. First we determine that our free buying power is enough to cover the initial margin requirement, then we provide a mechanism via a virtual method PassesPositionGroupSpecificBuyingPowerForOrderChecks for subclasses to inject their own checks and finally we perform the ‘what if’ analysis by invoking GetChangeInReservedBuyingPower and verifying that the change isn’t greater than the free buying power. The SecurityPositionGroupBuyingPowerModel overrides the PassesPositionGroupSpecificBuyingPowerForOrderChecks in order to invoke security.BuyingPowerModel.

It’s worth noting here that ALL implementations of IPositionGroupBuyingPowerModel should provide reasonable/idiomatic implementations of GetHashCode and Equals. This is because the model types are used in the PositionGroupKey, and as such, equality checks are done against it, but we want to treat these models as value types when it comes to equality checking, i.e, verify private fields are equal and the types are equal - even better, let a tool like ReSharper implement them for you :)

Also worth mentioning here is that ALL derived types will have to provide implementations for GetInitialMarginRequirement/GetMaintenanceMargin/GetInitialMarginRequiredForOrder. These functions enable us to implement the tougher functions in the base class and keeps subclasses laser focused on what makes them special, with an aim of preventing and/or reducing copy pasta. An optional override is the PassesPositionGroupSpecificBuyingPowerForOrderChecks which the SecurityPositionGroupBuyingPowerModel uses to invoke security.BuyingPowerModel functions directly.

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/PositionGroupBuyingPowerModel.cs

SecurityPositionGroupBuyingPowerModel

Provides an implementation of IPositionGroupBuyingPowerModel that delegates to security.BuyingPowerModel. This model is intended to be used with the ‘default’ group and its aim is to provide 100% backwards compatible behavior. Below are the overriden methods with a very brief comment describing how the delegating to the security’s models happens. It’s important to note here that IPositionGroup.Quantity is, from the security’s perspective, a number of lots. In our 5 covered call example, there’s 5 lots of (-1 GOOG CALL & 100 GOOG) for a total of -5 GOOG CALL & 500 GOOG shares. This is a position group quantity of 5. There are 5 lots of the GOOG equity and 5 lots of -1 GOOG CALL.

// See: https://github.com/QuantConnect/Lean/blob/refactor-4065-position-groups/Common/Securities/Positions/SecurityPositionGroupBuyingPowerModel.cs

/// <summary>
/// Gets the margin currently allocated to the specified holding
/// </summary>
/// <param name="parameters">An object containing the security</param>
/// <returns>The maintenance margin required for the </returns>
public override MaintenanceMargin GetMaintenanceMargin(PositionGroupMaintenanceMarginParameters parameters)
{
 // simply delegate to security.BuyingPowerModel.GetMaintenanceMargin
}

/// <summary>
/// The margin that must be held in order to increase the position by the provided quantity
/// </summary>
/// <param name="parameters">An object containing the security and quantity</param>
public override InitialMargin GetInitialMarginRequirement(PositionGroupInitialMarginParameters parameters)
{
 // simply delegates to security.BuyingPowerModel.GetInitialMarginRequirement
}

/// <summary>
/// Gets the total margin required to execute the specified order in units of the account currency including fees
/// </summary>
/// <param name="parameters">An object containing the portfolio, the security and the order</param>
/// <returns>The total margin in terms of the currency quoted in the order</returns>
public override InitialMargin GetInitialMarginRequiredForOrder(
 PositionGroupInitialMarginForOrderParameters parameters
)
{
 // simply delegates to security.BuyingPowerModel.GetInitialMarginRequiredForOrder
}

/// <summary>
/// Get the maximum position group order quantity to obtain a position with a given buying power
/// percentage. Will not take into account free buying power.
/// </summary>
/// <param name="parameters">An object containing the portfolio, the position group and the target
/// signed buying power percentage</param>
/// <returns>Returns the maximum allowed market order quantity and if zero, also the reason</returns>
public override GetMaximumLotsResult GetMaximumLotsForTargetBuyingPower(
 GetMaximumLotsForTargetBuyingPowerParameters parameters
)
{
 // simply delegates to security.BuyingPowerModel.GetMaximumOrderQuantityForTargetBuyingPower
 // and then converts the result which is in number of lots into a quantity using the lot size
 var quantity = result.Quantity / security.SymbolProperties.LotSize;
}

/// <summary>
/// Get the maximum market position group order quantity to obtain a delta in the buying power used by a position group.
/// The deltas sign defines the position side to apply it to, positive long, negative short.
/// </summary>
/// <param name="parameters">An object containing the portfolio, the position group and the delta buying power</param>
/// <returns>Returns the maximum allowed market order quantity and if zero, also the reason</returns>
/// <remarks>Used by the margin call model to reduce the position by a delta percent.</remarks>
public override GetMaximumLotsResult GetMaximumLotsForDeltaBuyingPower(
 GetMaximumLotsForDeltaBuyingPowerParameters parameters
)
{
 // simply delegates to security.BuyingPowerModel.GetMaximumOrderQuantityForDeltaBuyingPower
 // and converts the maximum quantity into number of lots using the security's lot size
}

/// <summary>
/// Check if there is sufficient buying power for the position group to execute this order.
/// </summary>
/// <param name="parameters">An object containing the portfolio, the position group and the order</param>
/// <returns>Returns buying power information for an order against a position group</returns>
public override HasSufficientBuyingPowerForOrderResult HasSufficientBuyingPowerForOrder(
 HasSufficientPositionGroupBuyingPowerForOrderParameters parameters
)
{
 // simply delegates to security.BuyingPowerModel.HasSufficientBuyingPowerForOrder
}

/// <summary>
/// Additionally check initial margin requirements if the algorithm only has default position groups
/// </summary>
protected override HasSufficientBuyingPowerForOrderResult PassesPositionGroupSpecificBuyingPowerForOrderChecks(
 HasSufficientPositionGroupBuyingPowerForOrderParameters parameters,
 decimal availableBuyingPower
)
{
 // simply delegates to security.BuyingPowerModel.HasSufficientBuyingPowerForOrder for default groups
}

LEAN Integration

The above highlights the main abstractions and key terms used throughout the position groups feature code changes and commit messages. If you don’t understand anything written prior to this sentence, stop, and go read it again. The aforementioned concepts are critical to have a firm understanding in before moving forward with how it all integrates into LEAN, and the rest of this document assumes that the reader understands all of the terminology by this point.

PositionManager

The PositionManager provides a mechanism similar to SecurityPortfolioManager to manage positions and position groups. Event handlers are wired up such that after every fill event the PositionManager is notified and if required, will invoke the configured IPositionGroupResolver to determine the latest and greatest set of groups. Any ungrouped holdings get moved into the default SecurityPositionGroup – the group of last resort. ALL HOLDINGS ARE ALWAYS GROUPED.

The CompositePositionGroupResolver needs to be added to the manager. The idea behind this guy is he would hold a list of resolvers configured by the algorithm, for example, one for options, one for futures and the last one would be the default (resolver of last resort) SecurityPositionGroupResolver. There’s a WIP branch (origin/refactor-4065-position-groups.wip) that has an implementation of the composite resolver as well as having it all wired up properly in the position manager. Feel free to pull that in, minor edits are required. The order in which the resolvers are invoked is obviously important. If the SecurityPositionGroupResolver went firsT then everything would be grouped before the other resolvers ran, so obviously he needs to run last. His entire job is to group everything that didn’t get grouped. Foot stomping here. The ordering of invocation matters. GREATLY

Once a CompositePositionGroupResolver is implemented, should probably start with it just having the single default resolver for simplicity (SecurityPositionGroupResolver), make sure all unit/regression tests are passing and that’s a clean/solid breakpoint.

Other Touch Points

SecurityHolding.QuantityChanged event was added and the PositionManager listens to this. Every time quantities change (fill) we need to know so that we can re-run the resolvers. PositionManager.ResolveGroups() is also invoked via SecurityPortfolioManager.ProcessFill when it’s a partial/completed fill event (quantity changed). In order for all the margin maths to be correct, we must resolve groups immediately. Consider multiple market orders set to synchronous in the same OnData – if we don’t run the resolvers then the buying power models won’t even know those orders executed because the buying power models’ view of the world is through the lense of position groups, so it’s incredibly important that EVERY time security holdings change we run the position group resolves to ensure consistent state.

 LEAN Data Formats

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats

Introduction

From the beginning LEAN strived to use an open, human readable data format - independent of any specific database or file format. From this core philosophy we built LEAN to read its financial data from flat files on disk. Data compression is done in zip format; and all individual files are CSV or JSON.

When there is no activity for a security, the price is omitted to the file. Only new ticks, and price changes are recorded.

File Data Format

Although we strive to make all data formats identical it is often not possible. Below are links to dedicated documentation on the file format of the data in each asset type:

Equity [https://www.quantconnect.com/data/tree/equity] | Forex [https://www.quantconnect.com/data/tree/forex] | Options [https://www.quantconnect.com/data/tree/option] | Futures [https://www.quantconnect.com/data/tree/future] | Crypto [https://www.quantconnect.com/data/tree/crypto]

Folder Structure

Data files are separated and nested in a few predictable layers:

	Tick, Second and Minute Financial Data:
/data/securityType/marketName/resolution/ticker/date_tradeType.zip

	Hour, Daily Financial Data:
/data/securityType/marketName/resolution/ticker.zip

The marketName value is used to separate different tradable assets with the same ticker. E.g. EURUSD is traded on multiple brokerages all with slightly different prices.

Core Data Types

LEAN has a few core data types which are represented in all the asset classes we support. Below are links to their implementation in LEAN.

	TradeBar [https://github.com/QuantConnect/Lean/blob/master/Common/Data/Market/TradeBar.cs#L182] - TradeBar represents trade ticks of assets consolidated for a period. TradeBar file format is slightly different for high resolution (second, minute) and low resolution (daily, hour).

	QuoteBar [https://github.com/QuantConnect/Lean/blob/master/Common/Data/Market/QuoteBar.cs#L273] - QuoteBar represents top of book quote data consolidated over a period of time (bid and ask bar).

	Tick [https://github.com/QuantConnect/Lean/blob/master/Common/Data/Market/Tick.cs#L216] - Tick data represents an individual record of trades (”trade ticks”) or quote updates (”quote tick”) for an asset. Tick data is instantaneous - it does not have a period.

Data Readers

All data is parsed from disk via Reader() methods. The Reader takes a single line of the file and converts it the appropriate type. i.e. TradeBar.Reader() method is a factory which returns TradeBar objects. When implementing custom data Readers are used

Other Data Formats

Theoretically LEAN can accept data in any format (database, API or flatfile). However practically we currently have reader implementations written for a flat file system.

 LEAN Data Formats / Contracts for Difference (CFD)

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats / Contracts for Difference (CFD)

QuantConnect hosts CFD data provided by Oanda. The data contains only Quote data.
All data are stored in zip files, each containing a single CSV file. You can explore CFD data on our website at https://www.quantconnect.com/data/tree/cfd

CFD data supports the following Resolutions:

	Tick

	Second

	Minute

	Hour

	Daily

The markets we currently support are:

	Oanda

CFD data operates in multiple timezones, so please confirm with the market hours database for the specific timezone of your asset.

Minute and Second File Format

Second/minute files are located in the cfd / market / resolution / symbol folder.

The ZIP files have the filename format: YYYYMMDD_quote.zip. The CSV file contained within has the filename format: YYYYMMDD_symbol_resolution_quote.csv

Second/minute quote format and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
113000	55.01	55.95	54.80	55.50	18968	55.10	56	54.85	55.55	2913

	Time - Milliseconds since midnight

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Hour and Daily File Format

Hour/daily files are located in the cfd / market / resolution folder.

The ZIP files have the filename format: symbol.zip. The CSV file contained within has the filename format: symbol.csv

Hour/daily quote format and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
20190125 23:00	55.01	55.95	54.80	55.50	18968	55.10	56	54.85	55.55	2913

	Time - Formatted as YYYYMMDD HH:mm

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Tick File Format

Tick files are located in the cfd / market / tick / symbol folder.

The ZIP files have the filename format: YYYYMMDD_quote.zip. The CSV file contained within has the filename format: YYYYMMDD_symbol_resolution_quote.csv

Tick quote format and example data is as follows:

Time	Bid Price	Ask Price
—-	———	———
92000	10.38	10.40

	Time - Milliseconds since midnight

	Bid Price - Best bid price

	Ask Price - Best ask price

 LEAN Data Formats / Cryptocurrency (crypto)

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats / Cryptocurrency (crypto)

QuantConnect hosts crypto data provided by CryptoTick [https://www.cryptotick.com/].
The data contains both Trade and Quote data. Using the ToolBox applications GDAXDownloader and BitfinexDownloader, you can obtain historical trade data for free, but not quote data with this method.
You can also download crypto data (trades and quotes starting with Tick and ending with Minute resolution) for a fee on our website. You can explore the data and purchase it at https://www.quantconnect.com/data/tree/crypto

CSV files are stored in compressed zip files, each containing a single CSV file.

Crypto data supports the following Resolutions:

	Tick

	Second

	Minute

	Hour

	Daily

The markets we currently support are:

	GDAX/Coinbase Pro

	Bitfinex (Beta)

tickType in this documentation can refer to one of the following:

	trade

	quote

All times are in UTC unless noted otherwise.

Minute and Second File Format

Second/Minute files are located in the crypto / market / resolution / symbol folder.

The zip files have the filename: YYYYMMDD_tickType.zip. The CSV file contained within has the filename: YYYYMMDD_symbol_resolution_tickType.csv

Second/Minute trade format and example data is as follows:

Time	Open	High	Low	Close	Volume
—-	—-	—-	—	—–	——
92000	132.01	132.05	131.95	132.03	49320

	Time - Milliseconds since midnight

	Open - Opening price

	High - High price

	Low - Low price

	Close - Closing price

	Volume - Total quantity trade

Second/Minute quote format and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
92000	132.01	132.05	132.00	132.03	24932.5	132.02	132.07	132.01	132.04	1200

	Time - Milliseconds since midnight

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Hour and Daily File Format

Hour/Daily files are located in the crypto / market / resolution folder.

The zip files have the filename: symbol_tickType.zip. The CSV file contained within has the filename: symbol.csv

Hour/Daily trade format and example data is as follows:

Time	Open	High	Low	Close	Volume
—-	—-	—-	—	—–	——
20180101 08:00	40.10	45.99	40.05	45.50	209342

	Time - Formatted as YYYYMMDD HH:mm

	Open - Opening price

	High - High price

	Low - Low price

	Close - Closing price

	Volume - Total quantity traded

Hour/Daily quote format and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
20190224 00:00	10.10	10.12	10.10	10.11	209324.91	10.11	10.13	10.11	10.12	290253

	Time - Formatted as YYYYMMDD HH:mm

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Tick File Format

Ticks files are located in the data / crypto / market / tick folder.

The zip files have the filename format: YYYYMMDD_tickType.zip. The CSV file contained within has the filename format: YYYYMMDD_symbol_resolution_tickType.csv

Tick trade format and example data is as follows:

Time	Last Price	Quantity
—-	———-	——–
86400	232.40	93.1

	Time - Milliseconds passed since midnight

	Last Price - Most recent trade price

	Quantity - Amount of asset purchased or sold

Tick quote format and example data is as follows:

Time	Bid Price	Bid Size	Ask Price	Ask Size
—-	———	——–	———	——–
86400	232.40	20392.0	232.42	8059.5

	Time - Milliseconds passed since midnight

	Bid Price - Best bid price

	Bid Size - Best bid price’s size/quantity

	Ask Price - Best ask price

	Ask Size - Best ask price’s size/quantity

 LEAN Data Formats / Equity

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats / Equity

QuantConnect hosts US Equity Data (market ‘USA’) provided by AlgoSeek [https://www.algoseek.com/] (trade and quote data from post-2007) and QuantQuote (trade data from pre-2007). Ticks are stored unfiltered. TradeBars and QuoteBars have suspicious ticks filtered out and the resulting ticks are consolidated and saved. QuantConnect has trade equity ticks as {YYYYMMDD}_trade.zip files, and quote equity ticks as {YYYYMMDD}_quote.zip.

The US equity data is in the New York timezone. Data timezones are found in the MarketHoursDatabase.json [https://github.com/QuantConnect/Lean/blob/master/Data/market-hours/market-hours-database.json]

Equity data supports the following Resolutions:

	Tick

	Second

	Minute

	Hour

	Daily

Minute, Second Data File Format

Minute, Second files are located in the equity / usa / resolution folders. The file name uses a 8-character length date: /data/equity/usa/minute/ticker/{YYYYMMDD}_{trade|quote}.zip. Note that only post-2007 period has quote data.

The zip file contains 1 CSV file which repeats the information about the path in the file name. e.g. 20140605_aapl_minute_trade.csv.

The trade CSV contents are as follows:

| Time | Open | High | Low | Close | Volume
| ———– | ———- | ——— | ———- | ——— | ———
| 15300000 | 6448000 | 6448000 | 6448000 | 6448000 | 90

	Time - Milliseconds since midnight in the timezone of the data format.

	Open - Deci-cents Open Price for TradeBar.

	High - Deci-cents High Price for TradeBar.

	Low - Deci-cents Low Price for TradeBar.

	Close - Deci-cents Close Price for TradeBar.

	Volume - Number of shares traded in this TradeBar.

The quote CSV contents are as follows:

| Time | Bid Open | Bid High | Bid Low | Bid Close | Bid Size | Ask Open | Ask High | Ask Low | Ask Close | Ask Size
| ———– | ———- | ——— | ———- | ——— | ——— | ———- | ——— | ———- | ——— | ———
| 15300000 | 6448000 | 6448000 | 6448000 | 6448000 | 90 | 6500000 | 6500000 | 6500000 | 6500000 | 100

	Time - Milliseconds since midnight in the timezone of the data format.

	Bid Open - Deci-cents Bid Open Price for QuoteBar.

	Bid High - Deci-cents Bid High Price for QuoteBar.

	Bid Low - Deci-cents Bid Low Price for QuoteBar.

	Bid Close - Deci-cents Bid Close Price for QuoteBar.

	Bid Size - Number of shares being bid that quoted in this QuoteBar.

	Ask Open - Deci-cents Ask Open Price for QuoteBar.

	Ask High - Deci-cents Ask High Price for QuoteBar.

	Ask Low - Deci-cents Ask Low Price for QuoteBar.

	Ask Close - Deci-cents Ask Close Price for QuoteBar.

	Ask Size - Number of shares being ask for that quoted in this QuoteBar.

Hour and Daily File Format

Hour and Daily files are located in the /equity/usa/{hour|daily} folder. Each file contains all bars available for this ticker. e.g. /data/equity/usa/hour/aapl.zip. The zip file contains 1 CSV file named the same as the ticker (aapl.csv). Only trade bar data is available in Hour and Daily resolution.

The CSV contents are as follows:

| DateTime | Open | High | Low | Close | Volume
| ———– | ———- | ——— | ———- | ——— | ———
| 20131001 09:00 | 6448000 | 6448000 | 6448000 | 6448000 | 90

	DateTime - String date “YYYYMMDD HH:MM” in the timezone of the data format.

	Open - Deci-cents Open Price for TradeBar.

	High - Deci-cents High Price for TradeBar.

	Low - Deci-cents Low Price for TradeBar.

	Close - Deci-cents Close Price for TradeBar.

	Volume - Number of shares traded in this TradeBar.

Divide prices by 10,000 to convert deci-cents to dollars.

Tick File Format

Equity tick data is stored in files which are located in the /equity/usa/tick folder. The file name uses a 8-character length date: /data/equity/usa/tick/{ticker}/{YYYYMMDD}_{trade|quote}.zip. QuantConnect currently provides Quote equity ticks (post-2007) and Trade equity ticks.

Trade tick files are stored in files named {YYYYMMDD}_trade.zip. There is one file equity tick names named after the data: 20131008_bac_Trade_Tick.csv. The CSV contains records of each trade:

| Time | TradeSale | Trade Volume | Exchange | Trade Sale Condition | Suspicious
| ———– | ———- | ——— | ———- | ——— | ———
| 14400009.367 | 137450 | 100 | D | 1 | 0

	Time - Milliseconds since midnight in the timezone of the data format.

	TradeSale - Deci-cents price of the tick sale.

	Volume - Number of shares in the sale.

	Exchange - Location of the sale.

	Trade Sale Condition - Notes on the sale.

	Suspicious - Boolean indicating the tick is flagged as suspicious according to AlgoSeek’s algorithms. This generally indicates the trade is far from other market prices and may be reversed.
TradeBar data excludes suspicious ticks.

Quote tick files are stored in files named {YYYYMMDD}_quote.zip. There is one file equity tick names named after the data: 20131008_bac_Quote_Tick.csv. The CSV contains records of each trade:

| Time | Bid Sale | Bid Size | Ask Sale | Ask Size | Exchange | Quote Sale Condition | Suspicious
| ———– | ———- | ——— | ———- | ——— | ———- | ——— | ———
| 14400009.367 | 137450 | 100 | 0 | 0 | D | 1 | 0

	Time - Milliseconds since midnight in the timezone of the data format.

	Bid Sale - Deci-cents bid price of the bid quote tick.

	Bid Size - Number of shares in the bid quote tick.

	Ask Sale - Deci-cents ask price of the ask quote tick.

	Ask Size - Number of shares in the ask quote tick.

	Exchange - Location of the sale.

	Quote Sale Condition - Notes on the sale.

	Suspicious - Boolean indicating the tick is flagged as suspicious according to AlgoSeek’s algorithms. This generally indicates the quote is far from other market prices and may be reversed.
Each quote tick contains either bid or ask data only. QuoteBar data excludes suspicious ticks.

Tick Exchange Codes

Exchange Letter | Exchange Name
— | —
A | NYSE MKT Stock Exchange
B | NASDAQ OMX BX Stock Exchange
C | National Stock Exchange
D | FINRA
I | International Securities Exchange
J | Direct Edge A Stock Exchange
K | Direct Edge X Stock Exchange
M | Chicago Stock Exchange
N | New York Stock Exchange
T | NASDAQ OMX Stock Exchange
P | NYSE Arca SM
S | Consolidated Tape System
T/Q | NASDAQ Stock Exchange
W | CBOE Stock Exchange
X | NASDAQ OMX PSX Stock Exchange
Y | BATS Y-Exchange
Z | BATS Exchange

Tick Sale Conditions

Trade Ticks [https://github.com/QuantConnect/Lean/blob/master/Common/Data/Auxiliary/TradeConditionFlags.cs]

Sale Condition Code | Description
— | —
0 | No Condition
1 | A trade made without stated conditions is deemed regular way for settlement on the third business day following the transaction date.
2 | A transaction which requires delivery of securities and payment on the same day the trade takes place.
4 | A transaction that requires the delivery of securities on the first business day following the trade date.
8 | A Seller’s Option transaction gives the seller the right to deliver the security at any time within a specific period, ranging from not less than two calendar days, to not more than sixty calendar days.
10 | Market Centers will have the ability to identify regular trades being reported during specific events as out of the ordinary by appending a new sale condition code Yellow Flag (Y) on each transaction reported to the UTP SIP. The new sale condition will be eligible to update all market center and consolidated statistics.
20 | The transaction that constituted the trade-through was the execution of an order identified as an Intermarket Sweep Order.
40 | The trade that constituted the trade-through was a single priced opening transaction by the Market Center.
80 | The transaction that constituted the trade-through was a single priced closing transaction by the Market Center.
100 | The trade that constituted the trade-through was a single priced reopening transaction by the Market Center.
200 | The transaction that constituted the trade-through was the execution of an order at a price that was not based, directly or indirectly, on the quoted price of the security at the time of execution and for which the material terms were not reasonably determinable at the time the commitment to execute the order was made.
400 | Trading in extended hours enables investors to react quickly to events that typically occur outside regular market hours, such as earnings reports. However, liquidity may be constrained during such Form T trading, resulting in wide bid-ask spreads.
800 | Sold Last is used when a trade prints in sequence but is reported late or printed in conformance to the One or Two Point Rule.
1000 | The transaction that constituted the trade-through was the execution by a trading center of an order for which, at the time of receipt of the order, the execution at no worse than a specified price a ‘stopped order’
2000 | Identifies a trade that was executed outside of regular primary market hours and is reported as an extended hours trade.
4000 | Identifies a trade that takes place outside of regular market hours.
8000 | An execution in two markets when the specialist or Market Maker in the market first receiving the order agrees to execute a portion of it at whatever price is realized in another market to which the balance of the order is forwarded for execution.
10000 | A transaction made on the Exchange as a result of an Exchange acquisition.
20000 | A trade representing an aggregate of two or more regular trades in a security occurring at the same price either simultaneously or within the same 60-second period, with no individual trade exceeding 10,000 shares.
40000 | Stock-Option Trade is used to identify cash equity transactions which are related to options transactions and therefore potentially subject to cancellation if market conditions of the options leg(s) prevent the execution of the stock-option order at the price agreed upon.
80000 | Sale of a large block of stock in such a manner that the price is not adversely affected.
100000 | A trade where the price reported is based upon an average of the prices for transactions in a security during all or any portion of the trading day.
200000 | Indicates that the trade resulted from a Market Center’s crossing session.
400000 | Indicates a regular market session trade transaction that carries a price that is significantly away from the prevailing consolidated or primary market value at the time of the transaction.
800000 | To qualify as a NYSE AMEX Rule 155
1000000 | Indicates the ‘Official’ closing value as determined by a Market Center. This transaction report will contain the market center generated closing price.
2000000 | A sale condition that identifies a trade based on a price at a prior point in time i.e. more than 90 seconds prior to the time of the trade report. The execution time of the trade will be the time of the prior reference price.
4000000 | Indicates the ‘Official’ open value as determined by a Market Center. This transaction report will contain the market
8000000 | The CAP Election Trade highlights sales as a result of a sweep execution on the NYSE, whereby CAP orders have been elected and executed outside the best price bid or offer and the orders appear as repeat trades at subsequent execution prices. This indicator provides additional information to market participants that an automatic sweep transaction has occurred with repeat trades as one continuous electronic transaction.
10000000 | A sale condition code that identifies a NYSE trade that has been automatically executed without the potential benefit of price improvement.
20000000 | Denotes whether or not a trade is exempt (Rule 611) and when used jointly with certain Sale Conditions, will more fully describe the characteristics of a particular trade.
40000000 | This flag is present in raw data, but AlgoSeek document does not describe it.
80000000 | Denotes the trade is an odd lot less than a 100 shares.

Quote Ticks [https://github.com/QuantConnect/Lean/blob/master/Common/Data/Auxiliary/QuoteConditionFlags.cs]

Sale Condition Code | Description
— | —
0 | No Condition
1 | This condition is used for the majority of quotes to indicate a normal trading environment.
2 | This condition is used to indicate that the quote is a Slow Quote on both the Bid and Offer sides due to a Set Slow List that includes High Price securities.
4 | While in this mode, auto-execution is not eligible, the quote is then considered manual and non-firm in the Bid and Offer and either or both sides can be traded through as per Regulation NMS.
8 | This condition can be disseminated to indicate that this quote was the last quote for a security for that Participant.
10 | This regulatory Opening Delay or Trading Halt is used when relevant news influencing the security is being disseminated. Trading is suspended until the primary market determines that an adequate publication or disclosure of information has occurred.transaction reported to the UTP SIP. The new sale condition will be eligible to update all market center and consolidated statistics.
20 | This condition is used to indicate a regulatory Opening Delay or Trading Halt due to an expected news announcement, which may influence the security. An Opening Delay or Trading Halt may be continued once the news has been disseminated.
40 | The condition is used to denote the probable trading range (bid and offer prices, no sizes) of a security that is not Opening Delayed or Trading Halted. The Trading Range Indication is used prior to or after the opening of a security.
80 | This non-regulatory Opening Delay or Trading Halt is used when there is a significant imbalance of buy or sell orders.
100 | This condition is disseminated by each individual FINRA Market Maker to signify either the last quote of the day or the premature close of an individual Market Maker for the day.
200 | This quote condition indicates a regulatory Opening Delay or Trading Halt due to conditions in which a security experiences a 10 % or more change in price over a five minute period.
400 | This quote condition suspends a Participant’s firm quote obligation for a quote for a security.
800 | This condition can be disseminated to indicate that this quote was the opening quote for a security for that Participant.
1000 | This non-regulatory Opening Delay or Trading Halt is used when events relating to one security will affect the price and performance of another related security. This non-regulatory Opening Delay or Trading Halt is also used when non-regulatory halt reasons such as Order Imbalance, Order Influx and Equipment Changeover are combined with Due to Related Security on CTS.
2000 | This quote condition along with zero-filled bid, offer and size fields is used to indicate that trading for a Participant is no longer suspended in a security which had been Opening Delayed or Trading Halted.
4000 | This quote condition is used when matters affecting the common stock of a company affect the performance of the non-common associated securities, e.g., warrants, rights, preferred, classes, etc.
8000 | This non-regulatory Opening Delay or Trading Halt is used when the ability to trade a security by a Participant is temporarily inhibited due to a systems, equipment or communications facility problem or for other technical reasons.
10000 | This non-regulatory Opening Delay or Trading Halt is used to indicate an Opening Delay or Trading Halt for a security whose price may fall below $1.05, possibly leading to a sub-penny execution.
20000 | This quote condition is used to indicate that an Opening Delay or a Trading Halt is to be in effect for the rest of the trading day in a security for a Participant.
40000 | This quote condition is used to indicate that a Limit Up-Limit Down Price Band is applicable for a security.
80000 | This quote condition is used to indicate that a Limit Up-Limit Down Price Band that is being disseminated is a ‘republication’ of the latest Price Band for a security.
100000 | This indicates that the market participant is in a manual mode on both the Bid and Ask. While in this mode, automated execution is not eligible on the Bid and Ask side and can be traded through pursuant to Regulation NMS requirements.
200000 | For extremely active periods of short duration. While in this mode, the UTP participant will enter quotations on a “best efforts” basis.
400000 | A halt condition used when there is a sudden order influx. To prevent a disorderly market, trading is temporarily suspended by the UTP participant.

See more information in the AlgoSeek whitepaper [https://us-equity-market-data-docs.s3.amazonaws.com/algoseek.US.Equity.TAQ.pdf].

Trade Ticks (Pre-2007)

Exchange | Sale Condition Code | Description
—- | — | —
CTS | Blank or ‘@’ | Regular Sale (no condition)
CTS | ‘B’ | Average Price Trade
CTS | ‘C’ | Cash Trade (same day clearing)
CTS | ‘E’ | Automatic Execution
CTS | ‘F’ | Intermarket Sweep Order
CTS | ‘G’ | Opening/Reopening Trade Detail
CTS | ‘H’ | Intraday Trade Detail
CTS | ‘I’ | CAP Election Trade
CTS | ‘J’ | Rule 127 Trade
CTS | ‘K’ | Rule 127 trade (NYSE only) or Rule 155 trade
NYSE | ‘L’ | Sold Last (late reporting)
NYSE | ‘N’ | Next Day Trade (next day clearing)
NYSE | ‘O’ | Market Center Opening Trade
NYSE | ‘R’ | Seller
NYSE | ‘S’ | Reserved
NYSE | ‘T’ | Extended Hours Trade
NYSE | ‘U’ | Extended Hours (Sold Out of Sequence)
NYSE | ‘Z’ | Sold (out of sequence)
NYSE | ‘4’ | Derivatively Priced
NYSE | ‘5’ | Market Center Re-opening Prints
NYSE | ‘6’ | Market Center Closing Prints
NASD | ‘@’ | Regular Trade
NASD | ‘A’ | Acquisition
NASD | ‘B’ | Bunched Trade
NASD | ‘C’ | Cash Trade
NASD | ‘D’ | Distribution
NASD | ‘F’ | Intermarket Sweep
NASD | ‘G’ | Bunched Sold Trade
NASD | ‘K’ | Rule 155 Trade (NYSE MKT Only)
NASD | ‘L’ | Sold Last
NASD | ‘M’ | Market Center Close Price
NASD | ‘N’ | Next Day
NASD | ‘O’ | Opening Prints
NASD | ‘P’ | Prior Reference Price
NASD | ‘Q’ | Market Center Open Price
NASD | ‘R’ | Seller (Long-Form Message Formats Only)
NASD | ‘S’ | Split Trade
NASD | ‘T’ | Form - T Trade
NASD | ‘U’ | Extended Hours (Sold Out of Sequence)
NASD | ‘W’ | Average Price Trade
NASD | ‘Y’ | Yellow Flag
NASD | ‘Z’ | Sold (Out of Sequence)
NASD | ‘1’ | Stopped Stock - Regular Trade
NASD | ‘2’ | Stopped Stock - Sold Last
NASD | ‘3’ | Stopped Stock - Sold Last 3 | Stopped Stock - Sold
NASD | ‘4’ | Derivatively Priced
NASD | ‘5’ | Re-opening Prints
NASD | ‘6’ | Closing Prints
NASD | ‘7’ | Placeholder for 611 Exempt
NASD | ‘8’ | Placeholder for 611 Exempt
NASD | ‘9’ | Placeholder for 611 Exempt

See more information in the QuantQuote whitepaper [https://quantquote.com/docs/TickView_Historical_Trades.pdf].

 DATA PROVIDED BY ALGOSEEK

DATA PROVIDED BY ALGOSEEK

ALL RIGHTS RESERVED

support@algoseek.com

 LEAN Data Formats / FOREX

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats / FOREX

QuantConnect hosts FOREX data provided by Oanda and FXCM. The data contains only Quote data. You can explore and download FOREX data for free on our website at https://www.quantconnect.com/data/tree/forex/

The data are stored in compressed zip files, each containing a single CSV file.

FOREX data can be used with the following Resolutions:

	Tick

	Second

	Minute

	Hour

	Daily

The markets we currently support are:

	FXCM

	Oanda

Minute and Second File Format

Second/minute files are located in the market / resolution / symbol folder.

The ZIP files have the filename format: YYYYMMDD_quote.zip. The CSV file contained within has the filename format: YYYYMMDD_symbol_resolution_quote.csv

Second/minute quotes format and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
113000	55.01	55.95	54.80	55.50	18968	55.10	56	54.85	55.55	2913

	Time - Milliseconds since midnight

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Hour and Daily File Format

Hour/daily files are located in the market / resolution folder.

The ZIP files have the filename format: symbol.zip. The CSV file contained within has the filename format: symbol.csv

Hour/Daily quotes format and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
20190125 23:00	55.01	55.95	54.80	55.50	18968	55.10	56	54.85	55.55	2913

	Time - Formatted as YYYYMMDD HH:mm

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Tick File Format

Tick files are located in the market / tick / symbol folder.

The ZIP files have the filename format: YYYYMMDD_quote.zip. The CSV file contained within has the filename format: YYYYMMDD_symbol_resolution_quote.csv

Tick quotes format and example data is as follows:

Time	Bid Price	Ask Price
—-	———	———
92000	10.38	10.40

	Time - Milliseconds since midnight

	Bid Price - Best bid price

	Ask Price - Best ask price

 LEAN Data Formats / Futures

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats / Futures

QuantConnect hosts futures data provided by AlgoSeek [https://algoseek.com/]. The data contains quotes, trades, and open interest data. You can explore futures data on our website at https://www.quantconnect.com/data/tree/future

The data are stored as compressed ZIP files, each capable of containing a single, or multiple CSV files, depending on the resolution requested.

Futures data can be used with the following Resolutions:

	Tick

	Second

	Minute

The markets we currently support are:

	CBOT

	CME

	NYMEX

	COMEX

	CBOE

	ICE

tickType in this documentation can refer to one of the following:

	trade

	quote

	openinterest

Minute and Second File Format

Second/Minute files are located in the future / market / resolution / symbol folder. The zip file contains multiple csv entries, varying by the symbol’s expiration date.

The zip files have the filename format: YYYYMMDD_tickType.zip. The CSV file contained within has the filename: YYYYMMDD_symbol_resolution_tickType_symbolExpirationDate.csv

Second/Minute trade schema and example data is as follows:

Time	Open	High	Low	Close	Volume
—-	—-	—-	—	—–	——
63271000	85.22	85.24	85.21	85.24	126

	Time - Milliseconds since midnight

	Open - Opening price

	High - High price

	Low - Low price

	Close - Closing price

	Volume - Total contracts traded

Second/Minute quote schema and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
10920000	1666.5	1666.5	1666.25	1666.25	47	1666.75	1666.75	1666.5	1666.5	37

	Time - Milliseconds since midnight

	Bid Open - Opening price for the best bid

	Bid High - Highest recorded bid price

	Bid Low - Lowest recorded bid price

	Bid Close - Closing price for the best bid

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask

	Ask High - Highest recorded ask price

	Ask Low - Lowest recorded ask price

	Ask Close - Closing price for the best ask

	Last Ask Size - Size of best ask at close

Second/Minute open interest schema and example data is as follows:

Time	Open Interest
—-	————-
42660000	2693575

	Time - Milliseconds since midnight

	Open Interest - outstanding contracts

Hour and Daily File Format

Hour/Daily files are located in the future / market / resolution folder. The zip file contains only a single entry.

The zip files have the filename format: symbol_tickType.zip. The CSV file contained within has the filename format: symbol_tickType_symbolExpirationDate.csv

Hour/Daily trades schema and example data is as follows:

Time	Open	High	Low	Close	Volume
—-	—-	—-	—	—–	——
20160601 00:00	43.20	43.50	43.10	43.45	513

	Time - Formatted as YYYYMMDD HH:mm

	Open - Opening price

	High - High price

	Low - Low price

	Close - Closing price

	Volume - Total contracts traded

Hour/Daily quote schema and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
20170719 00:00	583.20	583.40	583.10	583.40	2932	583.21	583.50	583.11	583.44	392

Hour/Daily open interest schema and example data is as follows:

Time	Open Interest
—-	————-
20190203 00:00	3902

	Time - Formatted as YYYYMMDD HH:mm

	Open Interest - outstanding contracts

Tick File Format

Tick data is stored in the future / market / tick / symbol folder. The zip file contains multiple csv entries, varying by the symbol’s expiration date.

The zip files have the filename format: YYYYMMDD_tickType.zip. The CSV files contained within have the filename format: YYYYMMDD_symbol_tick_tickType_symbolExpirationDate.csv

Tick trades schema and example data is as follows:

Time	Last Price	Quantity	Exchange	Sale Condition	Suspicious
—-	———-	——–	——–	————–	———-
939243	402.01	203	usa	null	0

	Time - Milliseconds since midnight

	Last Price - Last traded price

	Quantity - Amount traded

	Exchange - Where transaction took place

	Sale Condition - always null, not used

	Suspicious - Not used, will always be “0”

 Updating Initial and Maintenance Margins

Updating Initial and Maintenance Margins

CME Group Exchange Futures (CME, CBOT, NYMEX, COMEX)

CME publishes advisories containing the initial and maintenance margins on its website under the category:

Clearing -> Performance Bond-Margins

You can read more about how initial and maintenance margins are used by CME by visiting the Performance Bonds/Margins FAQ [https://www.cmegroup.com/clearing/cme-clearing-overview/performance-bonds.html] page.

Please note: This tutorial only covers sourcing data starting from 2008 and going onwards.

To get started, visit the Notices [https://www.cmegroup.com/tools-information/advisorySearch.html#cat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories&pageNumber=1&searchLocations=%2Fcontent%2Fcmegroup%2F&subcat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories%2FPerformance+Bond-Margins+Advisories] page, and set the starting date to a few months before your desired start date or contract listing if it is a new contract.

In this tutorial, we will be updating the CL (NYMEX; Crude Oil) contract margins starting from 2008.

Let’s begin by searching for Crude on the Notices page. CME includes the classes of futures affected by margin rate changes by commodity type, such as Natural Gas, Refined Products, Agriculture, Coal, Interest Rates, etc. By searching for the contract category, we can speed up the process in which we can source historical rates.

[image: CME Notices Page]Advisories Page

Note: If you are not getting results up until the current year, consider changing your search query to a more broad topic like Crude -> Energy. If that fails, consider omitting the search query and review each advisory for your ticker.

The report you want to be looking at is the Performance Bond Requirement Changes notice. Take note of the Effective Date, as that is the date you will want to input to the margin file. To view the margins, click on the text that says For the full text of this advisory, please click here.

[image: CME Advisory Notice Page]Advisory Notice Page

CME provides two different types of advisories:

	PDF

	Excel

Using PDF Advisories

A few notes before you begin:

	CME designates Summer as the months: April - October

	CME designates Winter as the months: November - March

	The front month is the contract closest to expiry

	Mth 1, Mnth 1, or Month 1 is the front month. Any subsequent increment in the month number is the month that comes after the front month.

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Begin by searching for your contract ticker surrounded in parenthesis, e.g. (CL).

	Ensure that the contract is for Outrights

	Ensure that the contract is not included as part of another contract. For example, Crude Oil (CL) vs. WTI Houston (Argus) Financial (HIA) does not apply to the CL contract.

	Ensure that the data for the contract has at least one Spec entry. (Note: Spec could potentially appear as Speculation.)

	Find the entry that has Month 1 in the description.

	In the initial margin column of our CSV file, input the new initial margin value from the PDF.

	In the maintenance margin column of our CSV file, input the new maintenance margin value from the PDF.

An example of an entry for CL found in the PDF advisory is shown below.

[image: CME CL in PDF Advisory Notice]CL in PDF advisory notice

Using Excel Advisories

Prerequisites:

	Excel, LibreOffice, or Google Sheets

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Look for text mentioning the initial margin and note it down. This should usually be 110%.

	In the Table of Contents tab, search for the ticker in the Product Code column of the table provided.

	Note down the Combined Commodity value the product code has.

	Note down the Scaling Factor of the product

An example entry for CL on the Table of Contents tab is shown below.
[image: CME CL in Table of Contents Spreadsheet Tab]CL in Table of Contents Spreadsheet Tab

	Change to the Outright tab of the spreadsheet. If there is no Outright tab, continue to the next advisory.

An example of the Outright tab entry is shown below.
[image: CME CL in Outright Spreadsheet Tab]CL in Outright Spreadsheet Tab

	Find the first entry for Combined Commodity matching your product’s value that you noted down.

	Write down the New Margin multiplied by the Scaling Factor in the maintenance margin column in our CSV file.

	Write down the New Margin multiplied by the Scaling Factor multiplied by the Initial Margin percentage in the initial margin column in our CSV file.

 Updating Initial and Maintenance Margins

Updating Initial and Maintenance Margins

CME Group Exchange Futures (CME, CBOT, NYMEX, COMEX)

CME publishes advisories containing the initial and maintenance margins on its website under the category:

Clearing -> Performance Bond-Margins

You can read more about how initial and maintenance margins are used by CME by visiting the Performance Bonds/Margins FAQ [https://www.cmegroup.com/clearing/cme-clearing-overview/performance-bonds.html] page.

Please note: This tutorial only covers sourcing data starting from 2008 and going onwards.

To get started, visit the Notices [https://www.cmegroup.com/tools-information/advisorySearch.html#cat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories&pageNumber=1&searchLocations=%2Fcontent%2Fcmegroup%2F&subcat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories%2FPerformance+Bond-Margins+Advisories] page, and set the starting date to a few months before your desired start date or contract listing if it is a new contract.

In this tutorial, we will be updating the CL (NYMEX; Crude Oil) contract margins starting from 2008.

Let’s begin by searching for Crude on the Notices page. CME includes the classes of futures affected by margin rate changes by commodity type, such as Natural Gas, Refined Products, Agriculture, Coal, Interest Rates, etc. By searching for the contract category, we can speed up the process in which we can source historical rates.

[image: CME Notices Page]Advisories Page

Note: If you are not getting results up until the current year, consider changing your search query to a more broad topic like Crude -> Energy. If that fails, consider omitting the search query and review each advisory for your ticker.

The report you want to be looking at is the Performance Bond Requirement Changes notice. Take note of the Effective Date, as that is the date you will want to input to the margin file. To view the margins, click on the text that says For the full text of this advisory, please click here.

[image: CME Advisory Notice Page]Advisory Notice Page

CME provides two different types of advisories:

	PDF

	Excel

Using PDF Advisories

A few notes before you begin:

	CME designates Summer as the months: April - October

	CME designates Winter as the months: November - March

	The front month is the contract closest to expiry

	Mth 1, Mnth 1, or Month 1 is the front month. Any subsequent increment in the month number is the month that comes after the front month.

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Begin by searching for your contract ticker surrounded in parenthesis, e.g. (CL).

	Ensure that the contract is for Outrights

	Ensure that the contract is not included as part of another contract. For example, Crude Oil (CL) vs. WTI Houston (Argus) Financial (HIA) does not apply to the CL contract.

	Ensure that the data for the contract has at least one Spec entry. (Note: Spec could potentially appear as Speculation.)

	Find the entry that has Month 1 in the description.

	In the initial margin column of our CSV file, input the new initial margin value from the PDF.

	In the maintenance margin column of our CSV file, input the new maintenance margin value from the PDF.

An example of an entry for CL found in the PDF advisory is shown below.

[image: CME CL in PDF Advisory Notice]CL in PDF advisory notice

Using Excel Advisories

Prerequisites:

	Excel, LibreOffice, or Google Sheets

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Look for text mentioning the initial margin and note it down. This should usually be 110%.

	In the Table of Contents tab, search for the ticker in the Product Code column of the table provided.

	Note down the Combined Commodity value the product code has.

	Note down the Scaling Factor of the product

An example entry for CL on the Table of Contents tab is shown below.
[image: CME CL in Table of Contents Spreadsheet Tab]CL in Table of Contents Spreadsheet Tab

	Change to the Outright tab of the spreadsheet. If there is no Outright tab, continue to the next advisory.

An example of the Outright tab entry is shown below.
[image: CME CL in Outright Spreadsheet Tab]CL in Outright Spreadsheet Tab

	Find the first entry for Combined Commodity matching your product’s value that you noted down.

	Write down the New Margin multiplied by the Scaling Factor in the maintenance margin column in our CSV file.

	Write down the New Margin multiplied by the Scaling Factor multiplied by the Initial Margin percentage in the initial margin column in our CSV file.

 Updating Initial and Maintenance Margins

Updating Initial and Maintenance Margins

CME Group Exchange Futures (CME, CBOT, NYMEX, COMEX)

CME publishes advisories containing the initial and maintenance margins on its website under the category:

Clearing -> Performance Bond-Margins

You can read more about how initial and maintenance margins are used by CME by visiting the Performance Bonds/Margins FAQ [https://www.cmegroup.com/clearing/cme-clearing-overview/performance-bonds.html] page.

Please note: This tutorial only covers sourcing data starting from 2008 and going onwards.

To get started, visit the Notices [https://www.cmegroup.com/tools-information/advisorySearch.html#cat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories&pageNumber=1&searchLocations=%2Fcontent%2Fcmegroup%2F&subcat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories%2FPerformance+Bond-Margins+Advisories] page, and set the starting date to a few months before your desired start date or contract listing if it is a new contract.

In this tutorial, we will be updating the CL (NYMEX; Crude Oil) contract margins starting from 2008.

Let’s begin by searching for Crude on the Notices page. CME includes the classes of futures affected by margin rate changes by commodity type, such as Natural Gas, Refined Products, Agriculture, Coal, Interest Rates, etc. By searching for the contract category, we can speed up the process in which we can source historical rates.

[image: CME Notices Page]Advisories Page

Note: If you are not getting results up until the current year, consider changing your search query to a more broad topic like Crude -> Energy. If that fails, consider omitting the search query and review each advisory for your ticker.

The report you want to be looking at is the Performance Bond Requirement Changes notice. Take note of the Effective Date, as that is the date you will want to input to the margin file. To view the margins, click on the text that says For the full text of this advisory, please click here.

[image: CME Advisory Notice Page]Advisory Notice Page

CME provides two different types of advisories:

	PDF

	Excel

Using PDF Advisories

A few notes before you begin:

	CME designates Summer as the months: April - October

	CME designates Winter as the months: November - March

	The front month is the contract closest to expiry

	Mth 1, Mnth 1, or Month 1 is the front month. Any subsequent increment in the month number is the month that comes after the front month.

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Begin by searching for your contract ticker surrounded in parenthesis, e.g. (CL).

	Ensure that the contract is for Outrights

	Ensure that the contract is not included as part of another contract. For example, Crude Oil (CL) vs. WTI Houston (Argus) Financial (HIA) does not apply to the CL contract.

	Ensure that the data for the contract has at least one Spec entry. (Note: Spec could potentially appear as Speculation.)

	Find the entry that has Month 1 in the description.

	In the initial margin column of our CSV file, input the new initial margin value from the PDF.

	In the maintenance margin column of our CSV file, input the new maintenance margin value from the PDF.

An example of an entry for CL found in the PDF advisory is shown below.

[image: CME CL in PDF Advisory Notice]CL in PDF advisory notice

Using Excel Advisories

Prerequisites:

	Excel, LibreOffice, or Google Sheets

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Look for text mentioning the initial margin and note it down. This should usually be 110%.

	In the Table of Contents tab, search for the ticker in the Product Code column of the table provided.

	Note down the Combined Commodity value the product code has.

	Note down the Scaling Factor of the product

An example entry for CL on the Table of Contents tab is shown below.
[image: CME CL in Table of Contents Spreadsheet Tab]CL in Table of Contents Spreadsheet Tab

	Change to the Outright tab of the spreadsheet. If there is no Outright tab, continue to the next advisory.

An example of the Outright tab entry is shown below.
[image: CME CL in Outright Spreadsheet Tab]CL in Outright Spreadsheet Tab

	Find the first entry for Combined Commodity matching your product’s value that you noted down.

	Write down the New Margin multiplied by the Scaling Factor in the maintenance margin column in our CSV file.

	Write down the New Margin multiplied by the Scaling Factor multiplied by the Initial Margin percentage in the initial margin column in our CSV file.

 Updating Initial and Maintenance Margins

Updating Initial and Maintenance Margins

CME Group Exchange Futures (CME, CBOT, NYMEX, COMEX)

CME publishes advisories containing the initial and maintenance margins on its website under the category:

Clearing -> Performance Bond-Margins

You can read more about how initial and maintenance margins are used by CME by visiting the Performance Bonds/Margins FAQ [https://www.cmegroup.com/clearing/cme-clearing-overview/performance-bonds.html] page.

Please note: This tutorial only covers sourcing data starting from 2008 and going onwards.

To get started, visit the Notices [https://www.cmegroup.com/tools-information/advisorySearch.html#cat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories&pageNumber=1&searchLocations=%2Fcontent%2Fcmegroup%2F&subcat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories%2FPerformance+Bond-Margins+Advisories] page, and set the starting date to a few months before your desired start date or contract listing if it is a new contract.

In this tutorial, we will be updating the CL (NYMEX; Crude Oil) contract margins starting from 2008.

Let’s begin by searching for Crude on the Notices page. CME includes the classes of futures affected by margin rate changes by commodity type, such as Natural Gas, Refined Products, Agriculture, Coal, Interest Rates, etc. By searching for the contract category, we can speed up the process in which we can source historical rates.

[image: CME Notices Page]Advisories Page

Note: If you are not getting results up until the current year, consider changing your search query to a more broad topic like Crude -> Energy. If that fails, consider omitting the search query and review each advisory for your ticker.

The report you want to be looking at is the Performance Bond Requirement Changes notice. Take note of the Effective Date, as that is the date you will want to input to the margin file. To view the margins, click on the text that says For the full text of this advisory, please click here.

[image: CME Advisory Notice Page]Advisory Notice Page

CME provides two different types of advisories:

	PDF

	Excel

Using PDF Advisories

A few notes before you begin:

	CME designates Summer as the months: April - October

	CME designates Winter as the months: November - March

	The front month is the contract closest to expiry

	Mth 1, Mnth 1, or Month 1 is the front month. Any subsequent increment in the month number is the month that comes after the front month.

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Begin by searching for your contract ticker surrounded in parenthesis, e.g. (CL).

	Ensure that the contract is for Outrights

	Ensure that the contract is not included as part of another contract. For example, Crude Oil (CL) vs. WTI Houston (Argus) Financial (HIA) does not apply to the CL contract.

	Ensure that the data for the contract has at least one Spec entry. (Note: Spec could potentially appear as Speculation.)

	Find the entry that has Month 1 in the description.

	In the initial margin column of our CSV file, input the new initial margin value from the PDF.

	In the maintenance margin column of our CSV file, input the new maintenance margin value from the PDF.

An example of an entry for CL found in the PDF advisory is shown below.

[image: CME CL in PDF Advisory Notice]CL in PDF advisory notice

Using Excel Advisories

Prerequisites:

	Excel, LibreOffice, or Google Sheets

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Look for text mentioning the initial margin and note it down. This should usually be 110%.

	In the Table of Contents tab, search for the ticker in the Product Code column of the table provided.

	Note down the Combined Commodity value the product code has.

	Note down the Scaling Factor of the product

An example entry for CL on the Table of Contents tab is shown below.
[image: CME CL in Table of Contents Spreadsheet Tab]CL in Table of Contents Spreadsheet Tab

	Change to the Outright tab of the spreadsheet. If there is no Outright tab, continue to the next advisory.

An example of the Outright tab entry is shown below.
[image: CME CL in Outright Spreadsheet Tab]CL in Outright Spreadsheet Tab

	Find the first entry for Combined Commodity matching your product’s value that you noted down.

	Write down the New Margin multiplied by the Scaling Factor in the maintenance margin column in our CSV file.

	Write down the New Margin multiplied by the Scaling Factor multiplied by the Initial Margin percentage in the initial margin column in our CSV file.

 Updating Initial and Maintenance Margins

Updating Initial and Maintenance Margins

CME Group Exchange Futures (CME, CBOT, NYMEX, COMEX)

CME publishes advisories containing the initial and maintenance margins on its website under the category:

Clearing -> Performance Bond-Margins

You can read more about how initial and maintenance margins are used by CME by visiting the Performance Bonds/Margins FAQ [https://www.cmegroup.com/clearing/cme-clearing-overview/performance-bonds.html] page.

Please note: This tutorial only covers sourcing data starting from 2008 and going onwards.

To get started, visit the Notices [https://www.cmegroup.com/tools-information/advisorySearch.html#cat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories&pageNumber=1&searchLocations=%2Fcontent%2Fcmegroup%2F&subcat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories%2FPerformance+Bond-Margins+Advisories] page, and set the starting date to a few months before your desired start date or contract listing if it is a new contract.

In this tutorial, we will be updating the CL (NYMEX; Crude Oil) contract margins starting from 2008.

Let’s begin by searching for Crude on the Notices page. CME includes the classes of futures affected by margin rate changes by commodity type, such as Natural Gas, Refined Products, Agriculture, Coal, Interest Rates, etc. By searching for the contract category, we can speed up the process in which we can source historical rates.

[image: CME Notices Page]Advisories Page

Note: If you are not getting results up until the current year, consider changing your search query to a more broad topic like Crude -> Energy. If that fails, consider omitting the search query and review each advisory for your ticker.

The report you want to be looking at is the Performance Bond Requirement Changes notice. Take note of the Effective Date, as that is the date you will want to input to the margin file. To view the margins, click on the text that says For the full text of this advisory, please click here.

[image: CME Advisory Notice Page]Advisory Notice Page

CME provides two different types of advisories:

	PDF

	Excel

Using PDF Advisories

A few notes before you begin:

	CME designates Summer as the months: April - October

	CME designates Winter as the months: November - March

	The front month is the contract closest to expiry

	Mth 1, Mnth 1, or Month 1 is the front month. Any subsequent increment in the month number is the month that comes after the front month.

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Begin by searching for your contract ticker surrounded in parenthesis, e.g. (CL).

	Ensure that the contract is for Outrights

	Ensure that the contract is not included as part of another contract. For example, Crude Oil (CL) vs. WTI Houston (Argus) Financial (HIA) does not apply to the CL contract.

	Ensure that the data for the contract has at least one Spec entry. (Note: Spec could potentially appear as Speculation.)

	Find the entry that has Month 1 in the description.

	In the initial margin column of our CSV file, input the new initial margin value from the PDF.

	In the maintenance margin column of our CSV file, input the new maintenance margin value from the PDF.

An example of an entry for CL found in the PDF advisory is shown below.

[image: CME CL in PDF Advisory Notice]CL in PDF advisory notice

Using Excel Advisories

Prerequisites:

	Excel, LibreOffice, or Google Sheets

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Look for text mentioning the initial margin and note it down. This should usually be 110%.

	In the Table of Contents tab, search for the ticker in the Product Code column of the table provided.

	Note down the Combined Commodity value the product code has.

	Note down the Scaling Factor of the product

An example entry for CL on the Table of Contents tab is shown below.
[image: CME CL in Table of Contents Spreadsheet Tab]CL in Table of Contents Spreadsheet Tab

	Change to the Outright tab of the spreadsheet. If there is no Outright tab, continue to the next advisory.

An example of the Outright tab entry is shown below.
[image: CME CL in Outright Spreadsheet Tab]CL in Outright Spreadsheet Tab

	Find the first entry for Combined Commodity matching your product’s value that you noted down.

	Write down the New Margin multiplied by the Scaling Factor in the maintenance margin column in our CSV file.

	Write down the New Margin multiplied by the Scaling Factor multiplied by the Initial Margin percentage in the initial margin column in our CSV file.

 Updating Initial and Maintenance Margins

Updating Initial and Maintenance Margins

CME Group Exchange Futures (CME, CBOT, NYMEX, COMEX)

CME publishes advisories containing the initial and maintenance margins on its website under the category:

Clearing -> Performance Bond-Margins

You can read more about how initial and maintenance margins are used by CME by visiting the Performance Bonds/Margins FAQ [https://www.cmegroup.com/clearing/cme-clearing-overview/performance-bonds.html] page.

Please note: This tutorial only covers sourcing data starting from 2008 and going onwards.

To get started, visit the Notices [https://www.cmegroup.com/tools-information/advisorySearch.html#cat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories&pageNumber=1&searchLocations=%2Fcontent%2Fcmegroup%2F&subcat=advisorynotices%3AAdvisory+Notices%2FClearing+Advisories%2FPerformance+Bond-Margins+Advisories] page, and set the starting date to a few months before your desired start date or contract listing if it is a new contract.

In this tutorial, we will be updating the CL (NYMEX; Crude Oil) contract margins starting from 2008.

Let’s begin by searching for Crude on the Notices page. CME includes the classes of futures affected by margin rate changes by commodity type, such as Natural Gas, Refined Products, Agriculture, Coal, Interest Rates, etc. By searching for the contract category, we can speed up the process in which we can source historical rates.

[image: CME Notices Page]Advisories Page

Note: If you are not getting results up until the current year, consider changing your search query to a more broad topic like Crude -> Energy. If that fails, consider omitting the search query and review each advisory for your ticker.

The report you want to be looking at is the Performance Bond Requirement Changes notice. Take note of the Effective Date, as that is the date you will want to input to the margin file. To view the margins, click on the text that says For the full text of this advisory, please click here.

[image: CME Advisory Notice Page]Advisory Notice Page

CME provides two different types of advisories:

	PDF

	Excel

Using PDF Advisories

A few notes before you begin:

	CME designates Summer as the months: April - October

	CME designates Winter as the months: November - March

	The front month is the contract closest to expiry

	Mth 1, Mnth 1, or Month 1 is the front month. Any subsequent increment in the month number is the month that comes after the front month.

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Begin by searching for your contract ticker surrounded in parenthesis, e.g. (CL).

	Ensure that the contract is for Outrights

	Ensure that the contract is not included as part of another contract. For example, Crude Oil (CL) vs. WTI Houston (Argus) Financial (HIA) does not apply to the CL contract.

	Ensure that the data for the contract has at least one Spec entry. (Note: Spec could potentially appear as Speculation.)

	Find the entry that has Month 1 in the description.

	In the initial margin column of our CSV file, input the new initial margin value from the PDF.

	In the maintenance margin column of our CSV file, input the new maintenance margin value from the PDF.

An example of an entry for CL found in the PDF advisory is shown below.

[image: CME CL in PDF Advisory Notice]CL in PDF advisory notice

Using Excel Advisories

Prerequisites:

	Excel, LibreOffice, or Google Sheets

To begin inputting information into the margin rate file, we must ensure the following. If any of the following steps result in failure, continue to the next advisory.

	Look for text mentioning the initial margin and note it down. This should usually be 110%.

	In the Table of Contents tab, search for the ticker in the Product Code column of the table provided.

	Note down the Combined Commodity value the product code has.

	Note down the Scaling Factor of the product

An example entry for CL on the Table of Contents tab is shown below.
[image: CME CL in Table of Contents Spreadsheet Tab]CL in Table of Contents Spreadsheet Tab

	Change to the Outright tab of the spreadsheet. If there is no Outright tab, continue to the next advisory.

An example of the Outright tab entry is shown below.
[image: CME CL in Outright Spreadsheet Tab]CL in Outright Spreadsheet Tab

	Find the first entry for Combined Commodity matching your product’s value that you noted down.

	Write down the New Margin multiplied by the Scaling Factor in the maintenance margin column in our CSV file.

	Write down the New Margin multiplied by the Scaling Factor multiplied by the Initial Margin percentage in the initial margin column in our CSV file.

 LEAN Data Formats / Options

 [image: https://raw.githubusercontent.com/QuantConnect/Lean/master/Documentation/logo.white.small.png]alt tag

LEAN Data Formats / Options

QuantConnect hosts options data provided by AlgoSeek [https://algoseek.com/]. The data contains quotes, trades, and open interest data. You can explore options data on our website at https://www.quantconnect.com/data/tree/option/

The data are stored as compressed ZIP files, each containing multiple CSV entries, varying on the option style, e.g. call/put, strike price, and expiration date.

Options data can be used with the following Resolutions:

	Minute

The markets we currently support are:

	USA

tickType in this documentation can refer to one of the following:

	trade

	quote

	openinterest

Minute File Format

Minute files are located in the option / market / resolution / symbol folder.

The zip files have the filename format: YYYYMMDD_tickType_optionType.zip. The CSV file contained within has the filename format: YYYYMMDD_symbol_resolution_tickType_optionType_optionStyle_decicentStrikePrice_symbolExpirationDate(YYYYMMDD).csv

Minute trade schema and example data is as follows:

Time	Open	High	Low	Close	Volume
—-	—-	—-	—	—–	——
63271000	120800	125600	120800	125000	404

	Time - Milliseconds since midnight

	Open - Opening price as deci-cents

	High - High price as deci-cents

	Low - Low price as deci-cents

	Close - Closing price as deci-cents

	Volume - Total contracts traded

Minute quote schema and example data is as follows:

Time	Bid Open	Bid High	Bid Low	Bid Close	Last Bid Size	Ask Open	Ask High	Ask Low	Ask Close	Last Ask Size
—-	——–	——–	——-	———	————-	——–	——–	——-	———	————-
10920000	120800	125600	120800	125000	10	120900	126800	120900	137000	100

	Time - Milliseconds since midnight

	Bid Open - Opening price for the best bid as deci-cents

	Bid High - Highest recorded bid price as deci-cents

	Bid Low - Lowest recorded bid price as deci-cents

	Bid Close - Closing price for the best bid as deci-cents

	Last Bid Size - Size of best bid at close

	Ask Open - Opening price for the best ask as deci-cents

	Ask High - Highest recorded ask price as deci-cents

	Ask Low - Lowest recorded ask price as deci-cents

	Ask Close - Closing price for the best ask as deci-cents

	Last Ask Size - Size of best ask at close

Divide prices by 10,000 to convert deci-cents to dollars

Minute open interest schema and example data is as follows:

Time	Open Interest
—-	————-
50280000	102

	Time - Milliseconds since midnight

	Open Interest - outstanding contracts

 System Overview

 For full documentation please see https://www.quantconnect.com/lean

System Overview

[image: ../_images/2-Overview-Detailed-New.png]alt tag

Lean outsourced key infrastructure management to plugins. The most important plugins are:

	Result Processing

Handle all messages from the algorithmic trading engine. Decide what should be sent, and where the messages should go. The result processing system can send messages to a local GUI, or the web interface.

	Datafeed Sourcing

Connect and download data required for the algorithmic trading engine. For backtesting this sources files from the disk, for live trading it connects to a stream and generates the data objects.

	Transaction Processing

Process new order requests; either using the fill models provided by the algorithm, or with an actual brokerage. Send the processed orders back to the algorithm’s portfolio to be filled.

	Realtime Event Management

Generate real time events - such as end of day events. Trigger callbacks to real time event handlers. For backtesting this is mocked-up an works on simulated time.

	Algorithm State Setup

Configure the algorithm cash, portfolio and data requested. Initialize all state parameters required.

For more information on the system design and contributing please see the Lean Website Documentation.

To update or change the above diagram, please see this google sheet [https://docs.google.com/presentation/d/1LHOBjAjAOD0TTXu0jBc6pIqSGGeQ4ZxoUQgX6m7A8pM/edit?usp=sharing]

 LocalPackages Directory

LocalPackages Directory

This directory of the repo is used for testing new package deployment in production without needing to publish the package before it is ready.

Placing any .nupkg files in this directory and using nuget restore .\QuantConnect.Lean.sln will allow any packages in this directory to be picked up and used by Lean as a dependency.

Note:

	dotnet build will not use this LocalPackages source, unless you add it to its sources like so:

dotnet nuget add source *PathToLeanHere*/LocalPackages

	Using nuget restore works without adding the source because it will pick up on the file .nuget/NuGet.Config which defines this source.

 QuantConnect Research Project

QuantConnect Research Project

Currently we have a few ways to use QuantConnect research notebooks:

	Lean CLI (Recommended)

	Install locally and run directly on your OS.

This document will cover the setup, getting started, and known issues.

 QuantConnect Testing

QuantConnect Testing

Before starting any testing, follow the installation instructions [https://github.com/QuantConnect/Lean#installation-instructions] to get LEAN running C# algorithms in your machine.
For any Python related tests please ensure you have followed the setup as described here [https://github.com/QuantConnect/Lean/tree/master/Algorithm.Python#install-python-36].

If the above installation, build, and initial run was successful than we can move forward to testing.

Visual Studio:

Locating Tests

	Open Visual Studios

	Open Test Explorer (”Test” > “Test Explorer”)

	The list should populate itself as it reads all the tests it found during the build process. If not, press “Run All Tests” and let VS find all of the tests.

	From here select the tests you would like to run and begin running them.

Failed Test Logs

	On a failed test, check the test for information by clicking on the desired test and selecting “Open Additional Output”

	This will show the stack trace and where the code failed to meet the testing requirements.

Common Problems

Having .NetFramework issues with testing?

	Install NUnit3TestAdapter [https://marketplace.visualstudio.com/items?itemName=NUnitDevelopers.NUnit3TestAdapter] for VS

Missing dependencies for Python Algorithm?

	Use pip or conda to install the module.

 Lean Data ToolBox

[image: https://cdn.quantconnect.com/web/i/20180601-1615-lean-logo-small.png]alt tag Lean Data ToolBox

[image: https://img.shields.io/badge/chat-Slack-53c82b.svg]Slack Chat [https://www.quantconnect.com/slack]

Lean Home [https://lean.quantconnect.com] | Documentation [https://lean.quantconnect.com/docs] | Download Lean [https://github.com/QuantConnect/Lean/archive/master.zip]

Introduction

Lean Engine is an open-source algorithmic trading engine built for easy strategy research, backtesting and live trading. We integrate with common data providers and brokerages so you can quickly deploy algorithmic trading strategies.

The ToolBox project is a command line program which wraps over 15 tools.

Usage

Each tool requires a different set of parameters, the only required argument is ‘–app=’, which defines the target tool and is case insensitive.

Help information is available using the ‘–help’ parameter.

Example: –app=YahooDownloader –tickers=SPY,AAPL –resolution=Daily –from-date=yyyyMMdd-HH:mm:ss –to-date=yyyyMMdd-HH:mm:ss

Available downloaders

	‘–app=’

	GDAXDownloader or GDAXDL

	CryptoiqDownloader or CDL

	DukascopyDownloader or DDL

	FxcmDownloader or FDL

	FxcmVolumeDownload or FVDL

	IBDownloader or IBDL

	KrakenDownloader or KDL

	OandaDownloader or ODL

	QuandlBitfinexDownloader or QBDL

	YahooDownloader or YDL

	IEXDownloader or IEXDL

	BitfinexDownloader or BFXDL

	PolygonDownloader or PDL

	‘–from-date=yyyyMMdd-HH:mm:ss’ required

	‘–tickers=SPY,AAPL,etc’ required, except for QuandlBitfinexDownloader (QBDL)

	‘–resolution=Tick/Second/Minute/Hour/Daily/All’ required, except for QuandlBitfinexDownloader (QBDL), CryptoiqDownloader (CDL). Case sensitive. Not all downloaders support all resolutions, send empty for more information.

	‘–to-date=yyyyMMdd-HH:mm:ss’ optional. If not provided ‘DateTime.UtcNow’ will be used

Available Converters

	‘–app=’

	AlgoSeekFuturesConverter or ASFC

	‘–date=yyyyMMdd’ reference date.

	AlgoSeekOptionsConverter or ASOC

	‘–date=yyyyMMdd’ reference date.

	CoinApiDataConverter or CADC

	‘–source-dir=’ path to the raw CoinAPI data.

	IVolatilityEquityConverter or IVEC

	‘–source-dir=’ source archived IVolatility data.

	‘–source-meta-dir=’ source archived IVolatility meta data.

	‘–destination-dir=’ directory where Lean Data is located “Lean/Data”.

	‘–resolution=Minute/Hour/Daily’ resolution of your IVolatility data. Case insensitive.

	KaikoDataConverter or KDC

	‘–mar